
Fixed-Point Toolbox
For Use with MATLAB®

Computation

Visualization

Programming

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Point Toolbox User’s Guide
© COPYRIGHT 2004–2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Version 1.1 (Release 14SP1)
March 2005 Online only Version 1.2 (Release 14SP2)
September 2005 Online only Version 1.3 (Release 14SP3)

Contents

Getting Started

1
What Is the Fixed-Point Toolbox? 1-2

Features . 1-2

Getting Help . 1-3
Getting Help in This Document . 1-3
Getting Help at the MATLAB Command Line 1-3

Display Settings . 1-5

Demos . 1-7

Fixed-Point Concepts

2
Fixed-Point Data Types . 2-2

Scaling . 2-4

Precision and Range . 2-5
Range . 2-5
Precision . 2-6

Arithmetic Operations . 2-8
Modulo Arithmetic . 2-8
Two’s Complement . 2-9
Addition and Subtraction . 2-10
Multiplication . 2-11
Casts . 2-16

i

fi Objects Compared to C Integer Data Types 2-20
Integer Data Types . 2-20
Unary Conversions . 2-22
Binary Conversions . 2-23
Overflow Handling . 2-25

Working with fi Objects

3
Constructing fi Objects . 3-2

Examples of Constructing fi Objects 3-3

fi Object Properties . 3-10
Data Properties . 3-10
fimath Properties . 3-10
numerictype Properties . 3-11
Setting Fixed-Point Properties at Object Creation 3-12
Using Direct Property Referencing with fi 3-13

fi Object Functions . 3-14

Working with fimath Objects

4
Constructing fimath Objects . 4-2

fimath Object Properties . 4-4
Setting fimath Properties at Object Creation 4-4
Using Direct Property Referencing with fimath 4-5
Setting fimath Properties in the Model Explorer 4-6

Using fimath Objects to Perform Fixed-Point
Arithmetic . 4-8

Using fimath to Share Arithmetic Rules 4-10

ii Contents

Using fimath ProductMode and SumMode 4-12
FullPrecision . 4-12
KeepLSB . 4-13
KeepMSB . 4-14
SpecifyPrecision . 4-15

fimath Object Functions . 4-17

Working with fipref Objects

5
Constructing fipref Objects . 5-2

fipref Object Properties . 5-3
Setting fipref Properties at Object Creation 5-3
Using Direct Property Referencing with fipref 5-3

Using fipref Objects to Set Display Preferences 5-5

Using fipref Objects to Set Logging Preferences 5-7
Logging Overflows and Underflows as Warnings 5-7
Accessing Logged Information with Functions 5-10
Using Min/Max Logging with Doubles Override to Choose

Scaling . 5-12

fipref Object Functions . 5-13

Working with numerictype Objects

6
Constructing numerictype Objects 6-2

Examples of Constructing numerictype Objects 6-3

numerictype Object Properties . 6-6

iii

Setting numerictype Properties at Object Creation 6-6
Using Direct Property Referencing with numerictype

Objects . 6-7
Setting numerictype Properties in the Model Explorer . . . 6-7

The numerictype Structure . 6-10
Properties That Affect the Slope . 6-11
Stored Integer Value and Real World Value 6-11

Using numerictype Objects to Share Data Type and
Scaling Settings . 6-12

numerictype Object Functions . 6-15

Working with quantizer Objects

7
Constructing quantizer Objects . 7-2

quantizer Object Properties . 7-4

Quantizing Data with quantizer Objects 7-5

Transformations for Quantized Data 7-7

quantizer Object Functions . 7-8

Interoperability with Other Products

8
Using fi Objects with Simulink . 8-2

Reading Fixed-Point Data from the Workspace 8-2
Writing Fixed-Point Data to the Workspace 8-2
Logging Fixed-Point Signals . 8-6

iv Contents

Accessing Fixed-Point Block Data During Simulation 8-6

Using fi Objects with Signal Processing Blockset 8-7
Reading Fixed-Point Signals from the Workspace 8-7
Writing Fixed-Point Signals to the Workspace 8-7

Using the Fixed-Point Toolbox with Embedded
MATLAB . 8-11
Supported Functions and Limitations of Fixed-Point

Embedded MATLAB . 8-11
Using the Model Explorer with Fixed-Point Embedded

MATLAB . 8-16
Example: Implementing a Fixed-Point Direct Form FIR

Using Embedded MATLAB . 8-20

Using fi Objects with Filter Design Toolbox 8-29

Property Reference

9
fi Object Properties . 9-2

bin . 9-2
data . 9-2
dec . 9-2
double . 9-2
fimath . 9-2
hex . 9-3
int . 9-3
NumericType . 9-3
oct . 9-4

fimath Object Properties . 9-5
CastBeforeSum . 9-5
MaxProductWordLength . 9-5
MaxSumWordLength . 9-5
OverflowMode . 9-5
ProductFractionLength . 9-6
ProductMode . 9-6
ProductWordLength . 9-7

v

RoundMode . 9-7
SumFractionLength . 9-8
SumMode . 9-8
SumWordLength . 9-9

fipref Object Properties . 9-10
FimathDisplay . 9-10
LoggingMode . 9-10
NumericTypeDisplay . 9-11
NumberDisplay . 9-11

numerictype Object Properties . 9-12
Bias . 9-12
DataType . 9-12
DataTypeMode . 9-12
FixedExponent . 9-13
FractionLength . 9-14
Scaling . 9-14
Signed . 9-14
Slope . 9-14
SlopeAdjustmentFactor . 9-15
WordLength . 9-15

quantizer Object Properties . 9-16
DataMode . 9-16
Format . 9-16
OverflowMode . 9-17
RoundMode . 9-18

Functions — Categorical List

10
Bitwise Functions . 10-2

Constructor and Property Functions 10-2

Data Manipulation Functions . 10-3

vi Contents

Data Type Functions . 10-5

Data Quantizing Functions . 10-6

Element-Wise Logical Operator Functions 10-6

Math Operation Functions . 10-6

Matrix Manipulation Functions . 10-8

Plotting Functions . 10-9

Radix Conversion Functions . 10-12

Relational Operator Functions . 10-13

Statistics Functions . 10-14

Subscripted Assignment and Reference Functions 10-15

fi Object Functions . 10-16

fimath Object Functions . 10-18

fipref Object Functions . 10-19

numerictype Object Functions . 10-20

quantizer Object Functions . 10-21

vii

Functions — Alphabetical List

11

Glossary

Index

viii Contents

1

Getting Started

What Is the Fixed-Point Toolbox?
(p. 1-2)

Describes the Fixed-Point Toolbox
and its major features

Getting Help (p. 1-3) Tells you how to get help on
Fixed-Point Toolbox objects,
properties, and functions

Display Settings (p. 1-5) Describes the fi object display
settings used in the code examples
in this User’s Guide

Demos (p. 1-7) Lists the Fixed-Point Toolbox demos

1 Getting Started

What Is the Fixed-Point Toolbox?
The Fixed-Point Toolbox provides fixed-point data types in MATLAB® and
enables algorithm development by providing fixed-point arithmetic. The
Fixed-Point Toolbox enables you to create the following types of objects:

• fi – Defines a fixed-point numeric object in the MATLAB workspace. Each
fi object is composed of value data, a fimath object, and a numerictype
object.

• fimath – Governs how overloaded arithmetic operators work with fi objects

• fipref – Defines the display and logging preferences of fi objects

• numerictype – Defines the data type and scaling attributes of fi objects

• quantizer – Quantizes data sets

Features
The Fixed-Point Toolbox provides you with

• The ability to define fixed-point data types, scaling, and rounding and
overflow methods in the MATLAB workspace

• Bit-true real and complex simulation

• Basic fixed-point arithmetic with binary point-only signals

- Arithmetic operators +, -, *, .*

- Division using the divide function

• Arbitrary word length up to intmax('uint16') bits

• Logging of minimums, maximums, overflows, and underflows

• Relational, logical, and bitwise operators

• Statistics functions such as max and min

• Conversions between binary, hex, double, and built-in integers

• Interoperability with Simulink®, Signal Processing Blockset, Embedded
MATLAB, and Filter Design Toolbox

• Compatibility with the Simulink To Workspace and From Workspace blocks

1-2

Getting Help

Getting Help
This section tells you how to get help for the Fixed-Point Toolbox in this
document and at the MATLAB command line.

Getting Help in This Document
The objects of the Fixed-Point Toolbox are discussed in the following chapters:

• Chapter 3, “Working with fi Objects”

• Chapter 4, “Working with fimath Objects”

• Chapter 5, “Working with fipref Objects”

• Chapter 6, “Working with numerictype Objects”

• Chapter 7, “Working with quantizer Objects”

To get in-depth information about the properties of these objects, refer to
Chapter 9, “Property Reference”.

To get in-depth information about the functions of these objects, refer to the
Function Reference.

Getting Help at the MATLAB Command Line
To get command-line help for Fixed-Point Toolbox objects, type

help objectname

For example,

help fi
help fimath
help fipref
help numerictype
help quantizer

1-3

1 Getting Started

To invoke Help Browser documentation for Fixed-Point Toolbox functions
from the MATLAB command line, type

doc fixedpoint/functionname

For example,

doc fixedpoint/int
doc fixedpoint/add
doc fixedpoint/savefipref
doc fixedpoint/quantize

1-4

Display Settings

Display Settings
In the Fixed-Point Toolbox, the display of fi objects is determined by the
fipref object. Throughout this User’s Guide, code examples of fi objects are
usually shown as they appear when the fipref properties are set as follows:

• NumberDisplay – 'RealWorldValue'

• NumericTypeDisplay – 'full'

• FimathDisplay – 'none'

For example,

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'full', 'FimathDisplay', 'none')

p =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'none'
LoggingMode: 'Off'

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

In other cases, it makes sense to also show the fimath object display:

• NumberDisplay – 'RealWorldValue'

• NumericTypeDisplay – 'full'

1-5

1 Getting Started

• FimathDisplay – 'full'

For example,

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'full', 'FimathDisplay', 'full')

p =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

For more information, refer to Chapter 5, “Working with fipref Objects”.

1-6

Demos

Demos
You can access demos in the Demos tab of the Help Navigator window. The
Fixed-Point Toolbox includes the following demos:

• Number Circle — Illustrates the definitions of unsigned and signed two’s
complement integer and fixed-point numbers

• fi Basics — Demonstrates the basic use of the fixed-point object fi

• fi Binary Point Scaling — Explains binary point-only scaling

• Fixed-Point Doubles Override, Min/Max Logging, and Scaling — Steps
through the workflow of using doubles override and min/max logging in
the Fixed-Point Toolbox to choose appropriate scaling for a fixed-point
algorithm

• Fixed-Point C Development — Shows how to use the parameters from a
fixed-point MATLAB program in a fixed-point C program

• Fixed-Point Algorithm Development — Presents the development and
verification of a simple fixed-point algorithm

• Fixed-Point Fast Fourier Transform (FFT) — Provides an example of
converting a textbook Fast Fourier Transform algorithm into fixed-point
MATLAB code and then into fixed-point C code

• Analysis of a Fixed-Point State-Space System with Limit Cycles —
Demonstrates a limit cycle detection routine applied to a state-space system

• Quantization Error — Demonstrates the statistics of the error when signals
are quantized using various rounding methods

1-7

1 Getting Started

1-8

2

Fixed-Point Concepts

Fixed-Point Data Types (p. 2-2) Defines fixed-point data types

Scaling (p. 2-4) Discusses the types of scaling used
in the Fixed-Point Toolbox; binary
point-only and [Slope Bias]

Precision and Range (p. 2-5) Discusses the concepts behind
arithmetic operations in the
Fixed-Point Toolbox.

Arithmetic Operations (p. 2-8) Introduces the concepts behind
arithmetic operations in the
Fixed-Point Toolbox

fi Objects Compared to C Integer
Data Types (p. 2-20)

Compares ANSI C integer data type
ranges, conversions, and exception
handling with those of fi objects

2 Fixed-Point Concepts

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is
a fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. This chapter discusses many terms and concepts relating to fixed-point
numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of
the binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:

where

• is the ith binary digit.

• is the word length in bits.

• is the location of the most significant, or highest, bit (MSB).

• is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of four.

2-2

Fixed-Point Data Types

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is the only representation used by the Fixed-Point Toolbox.
Refer to “Two’s Complement” on page 2-9 for more information.

2-3

2 Fixed-Point Concepts

Scaling
Fixed-point numbers can be encoded according to the scheme

where the slope can be expressed as

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In the Fixed-Point Toolbox, the negative of the fixed exponent is often referred
to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number.
In a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a
number in [Slope Bias] representation that has a bias equal to zero and a
fractional slope equal to one. This is referred to as binary point-only scaling
or power-of-two scaling:

or

The Fixed-Point Toolbox supports both binary point-only scaling and [Slope
Bias] scaling.

Note For examples of binary point-only scaling, see the Fixed-Point Toolbox
demo "fi Binary Point Scaling."

2-4

Precision and Range

Precision and Range
You must pay attention to the precision and range of the fixed-point data
types and scalings you choose in order to know whether rounding methods
will be invoked or if overflows or underflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling
can represent. The range of representable numbers for a two’s complement
fixed-point number of word length wl, scaling S, and bias B is illustrated
below:

For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2wl-1-1. Because there is only one
representation for zero, there are an unequal number of positive and negative
numbers. This means there is a representation for -2wl-1 but not for 2wl-1:

Overflow Handling
Because a fixed-point data type represents numbers within a finite range,
overflows and underflows can occur if the result of an operation is larger or
smaller than the numbers in that range.

The Fixed-Point Toolbox allows you to either saturate or wrap overflows.
Saturation represents positive overflows as the largest positive number

2-5

2 Fixed-Point Concepts

in the range being used, and negative overflows as the largest negative
number in the range being used. Wrapping uses modulo arithmetic to cast an
overflow back into the representable range of the data type. Refer to “Modulo
Arithmetic” on page 2-8 for more information.

When you create a fi object in the Fixed-Point Toolbox, any overflows are
saturated. The OverflowMode property of the default fimath object is
saturate. You can log overflows and underflows by setting the LoggingMode
property of the fipref object to on. Refer to “LoggingMode” on page 9-10
for more information.

Precision
The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
of its least significant bit. The value of the least significant bit, and therefore
the precision of the number, is determined by the number of fractional bits.
A fixed-point value can be represented to within half of the precision of its
data type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 2-4 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

Rounding Methods
One of the limitations of representing numbers with finite precision is that
not every number in the available range can be represented exactly. When
the result of a fixed-point calculation is a number that cannot be represented
exactly by the data type and scaling being used, precision is lost. A rounding
method must be used to cast the result to a representable number. The
Fixed-Point Toolbox currently supports the following rounding methods:

• floor, which is equivalent to truncation, rounds to the closest representable
number in the direction of negative infinity.

• ceil rounds to the closest representable number in the direction of positive
infinity.

2-6

Precision and Range

• fix rounds to the closest representable integer in the direction of zero.

• convergent rounds to the closest representable integer. In the case of a tie,
it rounds to the nearest even integer.

• nearest rounds to the closest representable integer. In the case of a tie,
it rounds to the closest representable integer in the direction of positive
infinity. This is the default rounding method for fi object creation and fi
arithmetic.

2-7

2 Fixed-Point Concepts

Arithmetic Operations
The following sections describe the arithmetic operations used by the
Fixed-Point Toolbox:

• “Modulo Arithmetic” on page 2-8

• “Two’s Complement” on page 2-9

• “Addition and Subtraction” on page 2-10

• “Multiplication” on page 2-11

• “Casts” on page 2-16

These sections will help you understand what data type and scaling choices
result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only
a finite set of numbers, wrapping the results of any calculations that fall
outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the "clock" system, 9
plus 9 equals 6. This can be more easily visualized as a number circle:

2-8

Arithmetic Operations

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped "around the circle" to either 0
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s complement,
positive numbers always start with a 0 and negative numbers always start
with a 1. If the leading bit of a two’s complement number is 0, the value
is obtained by calculating the standard binary value of the number. If the
leading bit of a two’s complement number is 1, the value is obtained by
assuming that the leftmost bit is negative, and then calculating the binary
value of the number. For example,

2-9

2 Fixed-Point Concepts

To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or "flip the bits."

2 Add a 1 using binary math.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

Next, add a 1, wrapping all numbers to 0 or 1:

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic
so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends
must be sign-extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

2-10

Arithmetic Operations

The default fimath object has a value of 1 (true) for the CastBeforeSum
property. This casts addends to the sum data type before addition. Therefore,
no further shifting is necessary during the addition to line up the binary
points.

If CastBeforeSum has a value of 0 (false), the addends are added with full
precision maintained. After the addition the sum is then quantized.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign-extended so that their left sides align
before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

2-11

2 Fixed-Point Concepts

Multiplication Data Types
The following diagrams show the data types used for fixed-point
multiplication. The diagrams illustrate the differences between the data
types used for real-real, complex-real, and complex-complex multiplication.

Real-Real Multiplication. The following diagram shows the data types used
in the multiplication of two real numbers in the Fixed-Point Toolbox. The
output of this multiplication is in the product data type, which is governed by
the fimath ProductMode property:

Real-Complex Multiplication. The following diagram shows the data types
used in the multiplication of a real and a complex fixed-point number in
the Fixed-Point Toolbox. Real-complex and complex-real multiplication are
equivalent. The output of this multiplication is in the product data type,
which is governed by the fimath ProductMode property:

Complex-Complex Multiplication. The following diagram shows the
multiplication of two complex fixed-point numbers in the Fixed-Point Toolbox.
Note that the output of the multiplication is in the sum data type, which
is governed by the fimath SumMode property. The product data type is
determined by the fimath ProductMode property:

2-12

Arithmetic Operations

Multiplication with fimath
In the following examples, let

• F = fimath('ProductMode','FullPrecision',...

'SumMode','FullPrecision')

• T1 = numerictype('WordLength',24,'FractionLength',20)

• T2 = numerictype('WordLength',16,'FractionLength',10)

Real*Real. Notice that the word length and fraction length of the result z
are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F)

x =

5

DataTypeMode: Fixed-point: binary point scaling

2-13

2 Fixed-Point Concepts

Signed: true
WordLength: 24

FractionLength: 20

y = fi(10, T2, F)

y =

10

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 10

z = x*y

z =

50

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 40
FractionLength: 30

Real*Complex. Notice that the word length and fraction length of the result
z are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

x = fi(5,T1,F)

x =

5

2-14

Arithmetic Operations

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 24
FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 10

z = x*y

z =

50.0000 +10.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 40
FractionLength: 30

Complex*Complex. Complex-complex multiplication involves an addition
as well as multiplication, so the word length of the full-precision result has
one more bit than the sum of the word lengths of the multiplicands:

x = fi(5+6i,T1,F)

x =

2-15

2 Fixed-Point Concepts

5.0000 + 6.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 24
FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 10

z = x*y

z =

38.0000 +70.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 41
FractionLength: 30

Casts
The fimath object allows you to specify the data type and scaling of
intermediate sums and products with the SumMode and ProductMode
properties. It is important to keep in mind the ramifications of each cast when

2-16

Arithmetic Operations

you set the SumMode and ProductMode properties. Depending upon the data
types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.

Casting from a Shorter Data Type to a Longer Data Type
Consider the cast of a nonzero number, represented by a 4-bit data type with
two fractional bits, to an 8-bit data type with seven fractional bits:

As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does
not fit, so overflow might occur and the result can saturate or wrap. The
empty bits at the low end of the destination data type are padded with either
0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.

You can see that even with a cast from a shorter data type to a longer data
type, overflow can still occur. This can happen when the integer length of

2-17

2 Fixed-Point Concepts

the source data type (in this case two) is longer than the integer length of
the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if
the destination data type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type
Consider the cast of a nonzero number, represented by an 8-bit data type with
seven fractional bits, to a 4-bit data type with two fractional bits:

As the diagram shows, the source bits are shifted down so that the binary
point matches the destination binary point position. There is no value for the
highest bit from the source, so the result is sign-extended to fill the integer
portion of the destination data type. The bottom five bits of the source do not
fit into the fraction length of the destination. Therefore, precision can be
lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter
data type, all the integer bits are maintained. Conversely, full precision can
be maintained even if you cast to a shorter data type, as long as the fraction
length of the destination data type is the same length or longer than the

2-18

Arithmetic Operations

fraction length of the source data type. In that case, however, bits are lost
from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.

2-19

2 Fixed-Point Concepts

fi Objects Compared to C Integer Data Types
The following sections compare the fi object with fixed-point data types and
operations in C:

• “Integer Data Types” on page 2-20

• “Unary Conversions” on page 2-22

• “Binary Conversions” on page 2-23

• “Overflow Handling” on page 2-25

In these sections, the information on ANSI C is adapted from Samuel P.
Harbison and Guy L. Steele Jr., C: A reference manual, 3rd ed., Prentice Hall,
1991.

Integer Data Types
This section compares the numerical range of fi integer data types to the
minimum numerical ranges of ANSI C integer data types.

ANSI C Integer Data Types
The following table shows the minimum ranges of ANSI C integer data types.
The integer ranges can be larger than or equal to those shown, but cannot be
smaller. The range of a long must be larger than or equal to the range of an
int, which must be larger than or equal to the range of a short.

Note that the minimum ANSI C ranges are large enough to accommodate
one’s complement or sign/magnitude representation, but not two’s complement
representation. In the one’s complement and sign/magnitude representations,
a signed integer with n bits has a range from to , inclusive.
In both of these representations, an equal number of positive and negative
numbers are represented, and zero is represented twice.

Integer Type Minimum Maximum

signed char -127 127

unsigned char 0 255

2-20

fi Objects Compared to C Integer Data Types

Integer Type Minimum Maximum

short int -32,767 32,767

unsigned short 0 65,535

int -32,767 32,767

unsigned int 0 65,535

long int -2,147,483,647 2,147,483,647

unsigned long 0 4,294,967,295

fi Integer Data Types
The following table lists the numerical ranges of the integer data types
of the fi object, in particular those equivalent to the C integer data
types. The ranges are large enough to accommodate the two’s complement
representation, which is the only signed binary encoding technique supported
by the Fixed-Point Toolbox. In the two’s complement representation, a signed
integer with n bits has a range from to , inclusive. An unsigned

integer with n bits has a range from 0 to , inclusive. The negative side of
the range has one more value than the positive side, and zero is represented
uniquely.

Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,1,n,0) Yes
n
(2 to
65,535)

0 N/A

fi(x,0,n,0) No
n
(2 to
65,535)

0 0 N/A

fi(x,1,8,0) Yes 8 0 -128 127 signed char

fi(x,0,8,0) No 8 0 0 255 unsigned char

fi(x,1,16,0) Yes 16 0 -32,768 32,767 short int

2-21

2 Fixed-Point Concepts

Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,0,16,0) No 16 0 0 65,535 unsigned
short

fi(x,1,32,0) Yes 32 0 -2,147,483,648 2,147,483,647 long int

fi(x,0,32,0) No 32 0 0 4,294,967,295 unsigned long

Unary Conversions
Unary conversions dictate whether and how a single operand is converted
before an operation is performed. This section discusses unary conversions
in ANSI C and of fi objects.

ANSI C Usual Unary Conversions
Unary conversions in ANSI C are automatically applied to the operands of
the unary !, –, ~, and * operators, and of the binary << and >> operators,
according to the following table:

Original Operand Type ANSI C Conversion

char or short int

unsigned char or unsigned short int or unsigned int1

float float

Array of T Pointer to T

Function returning T Pointer to function returning T

1If type int cannot represent all the values of the original data type without
overflow, the converted type is unsigned int.

2-22

fi Objects Compared to C Integer Data Types

fi Usual Unary Conversions
The following table shows the fi unary conversions:

C Operator fi Equivalent fi Conversion

!x ~x = not(x) Result is logical.

~x bitcmp(x) Result is same numeric type as operand.

*x No equivalent N/A

x<<n bitshift(x,n)
positive n

Result is same numeric type as operand. Overflow
mode is obeyed: wrap or saturate if 1-valued bits are
shifted off the left, or into the sign bit if the operand is
signed. 0-valued bits are shifted in on the right.

x>>n bitshift(x,-n) Result is same numeric type as operand. Round mode
is obeyed if 1-valued bits are shifted off the right.
0-valued bits are shifted in on the left if the operand is
either signed and positive or unsigned. 1-valued bits
are shifted in on the left if the operand is signed and
negative.

+x +x Result is same numeric type as operand.

-x -x Result is same numeric type as operand. Overflow
mode is obeyed. For example, overflow might occur
when you negate an unsigned fi or the most negative
value of a signed fi.

Binary Conversions
This section describes the conversions that occur when the operands of a
binary operator are different data types.

ANSI C Usual Binary Conversions
In ANSI C, operands of a binary operator must be of the same type. If they
are different, one is converted to the type of the other according to the first
applicable conversion in the following table:

2-23

2 Fixed-Point Concepts

Type of One Operand
Type of Other
Operand ANSI C Conversion

long double Any long double

double Any double

float Any float

unsigned long Any unsigned long

long unsigned long or unsigned
long1

long int long

unsigned int or unsigned unsigned

int int int

1Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions
When one of the operands of a binary operator (+, –, *, .*) is a fi object and
the other is a MATLAB built-in numeric type, then the non-fi operand is
converted to a fi object before the operation is performed, according to the
following table:

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi double or
single • Signed = same as the original fi operand

• WordLength = same as the original fi operand

• FractionLength = set to best precision possible

fi int8
• Signed = 1

• WordLength = 8

• FractionLength = 0

2-24

fi Objects Compared to C Integer Data Types

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi uint8
• Signed = 0

• WordLength = 8

• FractionLength = 0

fi int16
• Signed = 1

• WordLength = 16

• FractionLength = 0

fi uint16
• Signed = 0

• WordLength = 16

• FractionLength = 0

fi int32
• Signed = 1

• WordLength = 32

• FractionLength = 0

fi uint32
• Signed = 0

• WordLength = 32

• FractionLength = 0

Overflow Handling
The following sections compare how overflows are handled in ANSI C and the
Fixed-Point Toolbox.

2-25

2 Fixed-Point Concepts

ANSI C Overflow Handling
In ANSI C, the result of signed integer operations is whatever value is
produced by the machine instruction used to implement the operation.
Therefore, ANSI C has no rules for handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling
Addition and multiplication with fi objects yield results that can be exactly
represented by a fi object, up to word lengths of 65,535 bits or the available
memory on your machine. This is not true of division, however, because many
ratios result in infinite binary expressions. You can perform division with fi
objects using the divide function, which requires you to explicitly specify the
numeric type of the result.

The conditions under which a fi object overflows and the results then
produced are determined by the associated fimath object. You can specify
certain overflow characteristics separately for sums (including differences)
and products. Refer to the following table:

fimath Object Properties
Related to Overflow
Handling Property Value Description

'saturate' Overflows are saturated to the maximum
or minimum value in the range.

OverflowMode

'wrap' Overflows wrap using modulo arithmetic if
unsigned, two’s complement wrap if signed.

ProductMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxProductWordLength.

The rules for computing the resulting
product word and fraction lengths are
given in “ProductMode” on page 9-6.

2-26

fi Objects Compared to C Integer Data Types

fimath Object Properties
Related to Overflow
Handling Property Value Description

'KeepLSB' The least significant bits of the product are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The resulting word length is determined
by the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the least
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then overflow occurs.

The rule for computing the resulting
product fraction length is given in
“ProductMode” on page 9-6.

'KeepMSB' The most significant bits of the product are
kept. Overflow is prevented, but precision
may be lost.

The resulting word length is determined
by the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the most
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then rounding occurs.

The rule for computing the resulting
product fraction length is given in
“ProductMode” on page 9-6.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting product.

2-27

2 Fixed-Point Concepts

fimath Object Properties
Related to Overflow
Handling Property Value Description

ProductWordLength Positive integer The word length of product results when
ProductMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxProductWordLength Positive integer The maximum product word length allowed
when ProductMode is 'FullPrecision'.
The default is 128 bits. The maximum is
65,535 bits. This property can help ensure
that your simulation does not exceed your
hardware requirements.

ProductFractionLength Integer The fraction length of product results when
ProductMode is 'Specify Precision'.

SumMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxSumWordLength.

The rules for computing the resulting sum
word and fraction lengths are given in
“SumMode” on page 9-8.

'KeepLSB' The least significant bits of the sum are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The resulting word length is determined
by the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result
is stored in the least significant bits. If
SumWordLength is less than is necessary
for the full-precision sum, then overflow
occurs.

2-28

fi Objects Compared to C Integer Data Types

fimath Object Properties
Related to Overflow
Handling Property Value Description

The rule for computing the resulting sum
fraction length is given in “SumMode” on
page 9-8.

'KeepMSB' The most significant bits of the sum are
kept. Overflow is prevented, but precision
may be lost.

The resulting word length is determined
by the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result
is stored in the most significant bits. If
SumWordLength is less than is necessary
for the full-precision sum, then rounding
occurs.

The rule for computing the resulting sum
fraction length is given in “SumMode” on
page 9-8.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting sum.

SumWordLength Positive integer The word length of sum results when
SumMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxSumWordLength Positive integer The maximum sum word length allowed
when SumMode is 'FullPrecision'. The
default is 128 bits. The maximum is 65,535
bits. This property can help ensure that
your simulation does not exceed your
hardware requirements.

SumFractionLength Integer The fraction length of sum results when
SumMode is 'SpecifyPrecision'.

2-29

2 Fixed-Point Concepts

2-30

3

Working with fi Objects

Constructing fi Objects (p. 3-2) Teaches you how to create fi objects

fi Object Properties (p. 3-10) Tells you how to find more
information about the properties
associated with fi objects, and shows
you how to set these properties

fi Object Functions (p. 3-14) Introduces the functions in the
toolbox that operate directly on fi
objects

3 Working with fi Objects

Constructing fi Objects
You can create fi objects in the Fixed-Point Toolbox in one of two ways:

• You can use the fi constructor function to create a new object.

• You can use the fi constructor function to copy an existing fi object.

To get started, type

a = fi(0)

to create a fi object with the default data type and a value of 0.

a =

0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

A signed fi object is created with a value of 0, word length of 16 bits, and
fraction length of 15 bits.

Note For information on the display format of fi objects, refer to “Display
Settings” on page 1-5.

You can use the fi constructor function in the following ways:

• fi(v) returns a signed fixed-point object with value v, 16-bit word length,
and best-precision fraction length.

• fi(v,s) returns a fixed-point object with value v, signedness s, 16-bit word
length, and best-precision fraction length. s can be 0 (false) for unsigned
or 1 (true) for signed.

3-2

Constructing fi Objects

• fi(v,s,w) returns a fixed-point object with value v, signedness s, word
length w, and best-precision fraction length.

• fi(v,s,w,f) returns a fixed-point object with value v, signedness s, word
length w, and fraction length f.

• fi(v,s,w,slope,bias) returns a fixed-point object with value v,
signedness s, word length w, slope, and bias.

• fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns
a fixed-point object with value v, signedness s, word length w, slope
adjustment slopeadjustmentfactor, exponent fixedexponent, and bias
bias.

• fi(v,T) returns a fixed-point object with value v and
embedded.numerictype T. Refer to Chapter 6, “Working with
numerictype Objects” for more information on numerictype objects.

• fi(a,F) allows you to maintain the value and numerictype object of fi
object a, while changing its fimath object to F

• fi(v,T,F) returns a fixed-point object with value v, embedded.numerictype
T, and embedded.fimath F. Refer to Chapter 4, “Working with fimath
Objects” for more information on fimath objects.

• fi(...'PropertyName',PropertyValue...) and
fi('PropertyName',PropertyValue...) allow you to set properties for a
fi object using property name/property value pairs.

Examples of Constructing fi Objects
For example, the following creates a fi object with a value of pi, a word length
of 8 bits, and a fraction length of 3 bits.

a = fi(pi, 1, 8, 3)

a =

3.1250

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8

3-3

3 Working with fi Objects

FractionLength: 3

The value v can also be an array.

a = fi((magic(3)/10), 1, 16, 12)

a =

0.8000 0.1001 0.6001
0.3000 0.5000 0.7000
0.3999 0.8999 0.2000

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 12

If you omit the argument f, it is set automatically to the best precision
possible.

a = fi(pi, 1, 8)

a =

3.1563

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 5

If you omit w and f, they are set automatically to 16 bits and the best precision
possible, respectively.

a = fi(pi, 1)

a =

3-4

Constructing fi Objects

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

Constructing a fi Object with Property Name/Property Value
Pairs
You can use property name/property value pairs to set fi properties when
you create the object:

a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')

a =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

Constructing a fi Object Using a numerictype Object
You can use a numerictype object to define a fi object:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

3-5

3 Working with fi Objects

a = fi(pi, T)

a =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

You can also use a fimath object with a numeric type object to define a fi
object:

F = fimath

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a = fi(pi, T, F)

a =

3-6

Constructing fi Objects

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Determining Property Precedence
Note that the value of a property is taken from the last time it is set. For
example, create a numerictype object with a value of true for the 'signed'
property:

T = numerictype('signed', true)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

Now create the following fi object in which the numerictype property is
specified after the signed property, so that the resulting fi object is signed:

a = fi(pi,'signed',false,'numerictype',T)

a =

3-7

3 Working with fi Objects

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Contrast this with the following fi object in which the numerictype property
is specified before the signed property, so the resulting fi object is unsigned:

b = fi(pi,'numerictype',T,'signed',false)

b =

2.0000

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

3-8

Constructing fi Objects

Copying a fi Object
To copy a fi object, simply use assignment as in the following example:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

b = a

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

3-9

3 Working with fi Objects

fi Object Properties
The fi object has the following three general types of properties:

• “Data Properties” on page 3-10

• “fimath Properties” on page 3-10

• “numerictype Properties” on page 3-11

Data Properties
The data properties of a fi object are always writable:

• bin — Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec — Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB double

• hex — Stored integer value of a fi object in hexadecimal

• int — Stored integer value of a fi object, stored in a built-in MATLAB
integer data type. You can also use int8, int16, int32, uint8, uint16, and
uint32 to get the stored integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

fimath Properties
When you create a fi object, a fimath object is also automatically created as
a property of the fi object:

• fimath — fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi
object. The properties of the fimath object listed below are always writable:

• CastBeforeSum — Whether both operands are cast to the sum data type
before addition

• MaxProductWordLength — Maximum allowable word length for the product
data type

3-10

fi Object Properties

• MaxSumWordLength — Maximum allowable word length for the sum data
type

• ProductFractionLength — Fraction length, in bits, of the product data
type

• ProductMode — Defines how the product data type is determined

• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumWordLength — The word length, in bits, of the sum data type

numerictype Properties
When you create a fi object, a numerictype object is also automatically
created as a property of the fi object:

• numerictype — Object containing all the numeric type attributes of a fi
object

The following numerictype properties are, by transitivity, also properties of
a fi object. The properties of the numerictype object listed below are not
writable once the fi object has been created. However, you can create a copy
of a fi object with new values specified for the numerictype properties:

• Bias — Bias of a fi object

• DataType — Data type category associated with a fi object

• DataTypeMode — Data type and scaling mode of a fi object

• FixedExponent — Fixed-point exponent associated with a fi object

• SlopeAdjustmentFactor — Slope adjustment associated with a fi object

• FractionLength — Fraction length of the stored integer value of a fi
object in bits

• Scaling — Fixed-point scaling mode of a fi object

• Signed — Whether a fi object is signed or unsigned

3-11

3 Working with fi Objects

• Slope — Slope associated with a fi object

• WordLength — Word length of the stored integer value of a fi object in bits

These properties are described in detail in Chapter 9, “Property Reference”.
There are two ways to specify properties for fi objects in the Fixed-Point
Toolbox. Refer to the following sections:

• “Setting Fixed-Point Properties at Object Creation” on page 3-12

• “Using Direct Property Referencing with fi” on page 3-13

Setting Fixed-Point Properties at Object Creation
You can set properties of fi objects at the time of object creation by including
properties after the arguments of the fi constructor function. For example, to
set the overflow mode to wrap and the rounding mode to convergent,

a = fi(pi, 'OverflowMode', 'wrap', 'RoundMode', 'convergent')

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

3-12

fi Object Properties

Using Direct Property Referencing with fi
You can reference directly into a property for setting or retrieving fi object
property values using MATLAB structure-like referencing. You do this by
using a period to index into a property by name.

For example, to get the DataTypeMode of a,

a.DataTypeMode

ans =

Fixed-point: binary point scaling

To set the OverflowMode of a,

a.OverflowMode = 'wrap'

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

3-13

3 Working with fi Objects

fi Object Functions
The functions in the following table operate directly on fi objects.

abs all and any area

bar barh bin bitand bitcmp

bitget bitor bitshift bitxor buffer

clabel comet comet3 compass complex

coneplot conj contour contour3 contourc

contourf ctranspose dec diag double

end eps eq errorbar etreeplot

ezcontour ezcontourf ezmesh ezplot ezplot3

ezpolar ezsurf ezsurfc feather fi

fimath fplot ge get gplot

gt hankel hex hist histc

horzcat imag innerprodintbits inspect int

int8 int16 int32 intmax intmin

ipermute iscolumn isempty isequal isfi

isfinite isinf isnan isnumeric isobject

ispropequal isreal isrow isscalar issigned

isvector le length line logical

lowerbound lsb lt max mesh

meshc meshz min minus mtimes

ndims ne not numberofelements numerictype

oct or patch pcolor permute

plot plot3 plotmatrix plotyy plus

polar pow2 quantizer quiver quiver3

range real realmax realmin repmat

rescale reshape rgbplot ribbon rose

3-14

fi Object Functions

scatter scatter3 sdec sign single

size slice spy stairs stem

stem3 streamribbon streamslice streamtube stripscaling

subsasgn subsref sum surf surfc

surfl surfnorm text times toeplitz

transpose treeplot tril trimesh triplot

trisurf triu uint8 uint16 uint32

uminus uplus upperbound vertcat voronoi

voronoin waterfall xlim ylim zlim

You can learn about the functions associated with fi objects in the Function
Reference.

The following data-access functions can be also used to get the data in a fi
object using dot notation.

• bin

• data

• dec

• double

• hex

• int

• oct

For example,

a = fi(pi);
n = int(a)

n =

25736

3-15

3 Working with fi Objects

a.int

ans =

25736
h = hex(a)

h =

6488

a.hex

ans =

6488

3-16

4

Working with fimath
Objects

Constructing fimath Objects (p. 4-2) Teaches you how to create fimath
objects

fimath Object Properties (p. 4-4) Tells you how to find more
information about the properties
associated with fimath objects,
and shows you how to set these
properties

Using fimath Objects to Perform
Fixed-Point Arithmetic (p. 4-8)

Gives examples of using fimath
objects to control the results of
fixed-point arithmetic with fi
objects

Using fimath to Share Arithmetic
Rules (p. 4-10)

Gives an example of using a fimath
object to share modular arithmetic
information among multiple fi
objects

Using fimath ProductMode and
SumMode (p. 4-12)

Shows the differences among the
different settings of the ProductMode
and SumMode properties

fimath Object Functions (p. 4-17) Introduces the functions in the
toolbox that operate directly on
fimath objects

4 Working with fimath Objects

Constructing fimath Objects
fimath objects define the arithmetic attributes of fi objects. You can create
fimath objects in the Fixed-Point Toolbox in one of two ways:

• You can use the fimath constructor function to create a new object.

• You can use the fimath constructor function to copy an existing fimath
object.

To get started, type

F = fimath

to create a default fimath object.

F = fimath

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

To copy a fimath object, simply use assignment as in the following example:

F = fimath;
G = F;
isequal(F,G)

ans =

1

The syntax

4-2

Constructing fimath Objects

F = fimath(...'PropertyName',PropertyValue...)

allows you to set properties for a fimath object at object creation with
property name/property value pairs. Refer to “Setting fimath Properties at
Object Creation” on page 4-4.

4-3

4 Working with fimath Objects

fimath Object Properties
The following properties of fimath objects are always writable:

• CastBeforeSum – Whether both operands are cast to the sum data type
before addition

• MaxProductWordLength – Maximum allowable word length for the product
data type

• MaxSumWordLength – Maximum allowable word length for the sum data
type

• OverflowMode – Overflow-handling mode

• ProductFractionLength – Fraction length, in bits, of the product data type

• ProductMode – Defines how the product data type is determined

• ProductWordLength – Word length, in bits, of the product data type

• RoundMode – Rounding mode

• SumFractionLength – Fraction length, in bits, of the sum data type

• SumMode – Defines how the sum data type is determined

• SumWordLength – Word length, in bits, of the sum data type

These properties are described in detail in Chapter 9, “Property Reference”.
There are two ways to specify properties for fimath objects in the Fixed-Point
Toolbox. Refer to the following sections:

• “Setting fimath Properties at Object Creation” on page 4-4

• “Using Direct Property Referencing with fimath” on page 4-5

• “Setting fimath Properties in the Model Explorer” on page 4-6

Setting fimath Properties at Object Creation
You can set properties of fimath objects at the time of object creation by
including properties after the arguments of the fimath constructor function.
For example, to set the overflow mode to saturate and the rounding mode to
convergent,

4-4

fimath Object Properties

F = fimath('OverflowMode','saturate','RoundMode','convergent')

F =

RoundMode: convergent
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Using Direct Property Referencing with fimath
You can reference directly into a property for setting or retrieving fimath
object property values using MATLAB structure-like referencing. You do this
by using a period to index into a property by name.

For example, to get the RoundMode of F,

F.RoundMode

ans =

convergent

To set the OverflowMode of F,

F.OverflowMode = 'wrap'

F =

RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

4-5

4 Working with fimath Objects

Setting fimath Properties in the Model Explorer
You can view and change the properties for any fimath object defined in the
MATLAB workspace in the Model Explorer. Open the Model Explorer by
selecting View > Model Explorer in any Simulink model, or by typing
daexplr at the MATLAB command line.

The figure below shows the Model Explorer when you define the following
fimath objects in the MATLAB workspace:

F = fimath

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

G = fimath('OverflowMode','wrap')

G =

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

4-6

fimath Object Properties

Select the Base Workspace node in the Model Hierarchy pane to view the
current objects in the Contents pane. When you select a fimath object in the
Contents pane, you can view and change its properties in the Dialog pane.

4-7

4 Working with fimath Objects

Using fimath Objects to Perform Fixed-Point Arithmetic
The fimath object encapsulates the math properties of the Fixed-Point
Toolbox, and is itself a property of the fi object. Every fi object has a fimath
object as a property.

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a.fimath

ans =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

4-8

Using fimath Objects to Perform Fixed-Point Arithmetic

To perform arithmetic with +,-, .*, or *, two fi operands must have the same
fimath properties.

a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)

ans =

1

a + b

ans =

11.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 19
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

4-9

4 Working with fimath Objects

Using fimath to Share Arithmetic Rules
You can use a fimath object to define common arithmetic rules that you
would like to use for many fi objects. You can then create multiple fi
objects, using the same fimath object for each. To do so, you also need to
create a numerictype object to define a common data type and scaling. Refer
to Chapter 6, “Working with numerictype Objects” for more information
on numerictype objects. The following example shows the creation of a
numerictype object and fimath object, which are then used to create two fi
objects with the same numerictype and fimath attributes:

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

F = fimath('RoundMode', 'floor', 'OverflowMode', 'wrap')

F =

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a = fi(pi, T, F)

a =

-0.8584

4-10

Using fimath to Share Arithmetic Rules

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

b = fi(pi/2, T, F)

b =

1.5708

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

4-11

4 Working with fimath Objects

Using fimath ProductMode and SumMode
The following example shows the differences among the FullPrecision,
KeepLSB, KeepMSB, and SpecifyPrecision settings of the ProductMode and
SumMode properties. To follow along, first set the following display, overflow
logging, and fixed-point math preferences:

p = fipref;
p.NumericTypeDisplay = 'short';
p.FimathDisplay = 'none';
p.LoggingMode = 'on';
F = fimath('OverflowMode','wrap','RoundMode','floor',...

'CastBeforeSum',false);
warning off
format compact

Next define fi objects a and b. Both have signed 8–bit data types. The
fraction length is automatically chosen for each fi object to yield the best
possible precision:

a = fi(pi, true, 8)
a =

3.1563
s8,5

b = fi(exp(1), true, 8)
b =

2.7188
s8,5

FullPrecision
Now set ProductMode and SumMode for a and b to FullPrecision and look
at some results:

F.ProductMode = 'FullPrecision';
F.SumMode = 'FullPrecision';
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101

4-12

Using fimath ProductMode and SumMode

s8,5
b
b =

2.7188 %010.10111
s8,5

a*b
ans =

8.5811 %001000.1001010011
s16,10

a+b
ans =

5.8750 %0101.11100
s9,5

In FullPrecision mode, the product word length grows to the sum of the
word lengths of the operands. In this case, each operand has 8 bits, so the
product word length is 16 bits. The product fraction length is the sum of the
fraction lengths of the operands, in this case 5 + 5 = 10 bits.

The sum word length grows by one most-significant bit to accommodate the
possibility of a carry bit. The sum fraction length is aligned with the fraction
lengths of the operands, and all fractional bits are kept for full precision. In
this case, both operands have 5 fractional bits, so the sum has 5 fractional bits.

KeepLSB
Now set ProductMode and SumMode for a and b to KeepLSB and look at some
results:

F.ProductMode = 'KeepLSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepLSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b

4-13

4 Working with fimath Objects

b =
2.7188 %010.10111

s8,5
a*b
ans =

0.5811 %00.1001010011
s12,10

a+b
ans =

5.8750 %0000101.11100
s12,5

In KeepLSB mode, you specify the word lengths and the least-significant bits
of results are automatically kept. This mode models the behavior of integer
operations in the C language.

The product fraction length is the sum of the fraction lengths of the operands.
In this case, each operand has 5 fractional bits, so the product fraction length
is 10 bits. In this mode, all 10 fractional bits are kept. Overflow occurs
because the full-precision result requires 6 integer bits, and only 2 integer
bits remain in the product.

The sum fraction length is aligned with the fraction lengths of the operands,
and in this model all least-significant bits are kept. In this case, both operands
had 5 fractional bits, so the sum has 5 fractional bits. The full-precision result
requires 4 integer bits, and 7 integer bits remain in the sum, so no overflow
occurs in the sum.

KeepMSB
Now set ProductMode and SumMode for a and b to KeepMSB and look at some
results:

F.ProductMode = 'KeepMSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepMSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a

4-14

Using fimath ProductMode and SumMode

a =
3.1563 %011.00101

s8,5
b
b =

2.7188 %010.10111
s8,5

a*b
ans =

8.5781 %001000.100101
s12,6

a+b
ans =

5.8750 %0101.11100000
s12,8

In KeepMSB mode, you specify the word lengths and the most-significant
bits of sum and product results are automatically kept. This mode models
the behavior of many DSP devices where the product and sum are kept
in double-wide registers, and the programmer chooses to transfer the
most-significant bits from the registers to memory after each operation.

The full-precision product requires 6 integer bits, and the fraction length of
the product is adjusted to accommodate all 6 integer bits in this mode. No
overflow occurs. However, the full-precision product requires 10 fractional
bits, and only 6 are available. Therefore, precision is lost.

The full-precision sum requires 4 integer bits, and the fraction length of
the sum is adjusted to accommodate all 4 integer bits in this mode. The
full-precision sum requires only 5 fractional bits; in this case there are 8, so
there is no loss of precision.

SpecifyPrecision
Now set ProductMode and SumMode for a and b to SpecifyPrecision and
look at some results:

F.ProductMode = 'SpecifyPrecision';
F.ProductWordLength = 8;
F.ProductFractionLength = 7;

4-15

4 Working with fimath Objects

F.SumMode = 'SpecifyPrecision';
F.SumWordLength = 8;
F.SumFractionLength = 7;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

0.5781 %0.1001010
s8,7

a+b
ans =

-0.1250 %1.1110000
s8,7

In SpecifyPrecision mode, you must specify both word length and fraction
length for sums and products. This example unwisely uses fractional formats
for the products and sums, with 8–bit word lengths and 7–bit fraction lengths.

The full-precision product requires 6 integer bits, and the example specifies
only 1, so the product overflows. The full-precision product requires 10
fractional bits, and the example only specifies 7, so there is precision loss in
the product.

The full-precision sum requires 2 integer bits, and the example specifies only
1, so the sum overflows. The full-precision sum requires 5 fractional bits, and
the example specifies 7, so there is no loss of precision in the sum.

4-16

fimath Object Functions

fimath Object Functions
The following functions operate directly on fimath objects:

• add

• disp

• fimath

• isequal

• isfimath

• mpy

• sub

You can learn about the functions associated with fimath objects in the
Function Reference in the Fixed-Point Toolbox online documentation.

4-17

4 Working with fimath Objects

4-18

5

Working with fipref Objects

Constructing fipref Objects (p. 5-2) Teaches you how to create fipref
objects

fipref Object Properties (p. 5-3) Tells you how to find more
information about the properties
associated with fipref objects,
and shows you how to set these
properties

Using fipref Objects to Set Display
Preferences (p. 5-5)

Gives examples of using fipref
objects to set display preferences for
fi objects

Using fipref Objects to Set Logging
Preferences (p. 5-7)

Gives examples of using fipref
objects to set logging preferences for
fi objects

fipref Object Functions (p. 5-13) Introduces the functions in the
toolbox that operate directly on
fipref objects

5 Working with fipref Objects

Constructing fipref Objects
The fipref object defines the display and logging attributes for all fi objects.
You can use the fipref constructor function to create a new object.

To get started, type

P = fipref

to create a default fipref object.

P =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

The syntax

P = fipref(...'PropertyName','PropertyValue'...)

allows you to set properties for a fipref object at object creation with property
name/property value pairs.

Your fipref settings persist throughout your MATLAB session. Use
reset(fipref) to return to the default settings during your session. Use
savefipref to save your display preferences for subsequent MATLAB
sessions.

5-2

fipref Object Properties

fipref Object Properties
The following properties of fipref objects are always writable:

• FimathDisplay – Display options for the fimath attributes of a fi object

• NumericTypeDisplay – Display options for the numeric type attributes of
a fi object

• NumberDisplay – Display options for the value of a fi object

• LoggingMode – Logging options for operations performed on fi objects

These properties are described in detail in Chapter 9, “Property Reference”.
There are two ways to specify properties for fipref objects in the Fixed-Point
Toolbox. Refer to the following sections:

• “Setting fipref Properties at Object Creation” on page 5-3

• “Using Direct Property Referencing with fipref” on page 5-3

Setting fipref Properties at Object Creation
You can set properties of fipref objects at the time of object creation by
including properties after the arguments of the fipref constructor function.
For example, to set NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref('NumberDisplay', 'bin', 'NumericTypeDisplay', 'short')

P =

NumberDisplay: 'bin'
NumericTypeDisplay: 'short'

FimathDisplay: 'full'
LoggingMode: 'Off'

Using Direct Property Referencing with fipref
You can reference directly into a property for setting or retrieving fipref
object property values using MATLAB structure-like referencing. You do this
by using a period to index into a property by name.

5-3

5 Working with fipref Objects

For example, to get the NumberDisplay of P,

P.NumberDisplay

ans =

bin

To set the NumericTypeDisplay of P,

P.NumericTypeDisplay = 'full'

P =

NumberDisplay: 'bin'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

5-4

Using fipref Objects to Set Display Preferences

Using fipref Objects to Set Display Preferences
You use the fipref object to dictate three aspects of the display of fi objects:
how the value of a fi object is displayed, how the fimath properties are
displayed, and how the numerictype properties are displayed.

For example, the following shows the default fipref display for a fi object:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Now, change the fipref display properties:

P = fipref;
P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'

P =

NumberDisplay: 'bin'
NumericTypeDisplay: 'short'

FimathDisplay: 'none'

5-5

5 Working with fipref Objects

LoggingMode: 'Off'

a

a =

0110010010001000
(two's complement bin)

s16,13

5-6

Using fipref Objects to Set Logging Preferences

Using fipref Objects to Set Logging Preferences
When the LoggingMode property of the fipref object is set to on, overflows
and underflows are logged as warnings. When LoggingMode is on, you can
also have minimum and maximum values and the number of overflows,
underflows, and quantization errors returned to you using functions. Refer to
the following sections:

• “Logging Overflows and Underflows as Warnings” on page 5-7

• “Accessing Logged Information with Functions” on page 5-10

• “Using Min/Max Logging with Doubles Override to Choose Scaling” on
page 5-12

Logging Overflows and Underflows as Warnings
Overflows and underflows are logged as warnings for all assignment, plus,
minus, and multiplication operations when the fipref LoggingMode property
is set to on. For example, try the following:

1 Create a signed fi object that is a vector of values from 1 to 5, with 8-bit
word length and 6-bit fraction length.

a = fi(1:5,1,8,6);

2 Define the fimath object associated with a, and indicate that you will
specify the sum and product word and fraction lengths.

F = a.fimath;
F.SumMode = 'SpecifyPrecision';
F.ProductMode = 'SpecifyPrecision';
a.fimath = F;

3 Define the fipref object and turn on overflow and underflow logging.

P = fipref;
P.LoggingMode = 'on';

4 Suppress the numerictype and fimath displays.

P.NumericTypeDisplay = 'none';

5-7

5 Working with fipref Objects

P.FimathDisplay = 'none';

5 Specify the sum and product word and fraction lengths.

a.SumWordLength = 16;
a.SumFractionLength = 15;
a.ProductWordLength = 16;
a.ProductFractionLength = 15;

6 Warnings are displayed for overflows and underflows in assignment
operations. For example, try:

a(1) = pi
Warning: 1 overflow occurred in the fi assignment operation.

a =

1.9844 1.9844 1.9844 1.9844 1.9844
a(1) = double(eps(a))/10
Warning: 1 underflow occurred in the fi assignment operation.

a =

0 1.9844 1.9844 1.9844 1.9844

7 Warnings are displayed for overflows and underflows in addition and
subtraction operations. For example, try:

a+a
Warning: 12 overflows occurred in the fi + operation.

ans =

0 1.0000 1.0000 1.0000 1.0000
a-a
Warning: 8 overflows occurred in the fi - operation.

ans =

0 0 0 0 0

5-8

Using fipref Objects to Set Logging Preferences

8 Warnings are displayed for overflows and underflows in multiplication
operations. For example, try:

a.*a
Warning: 4 product overflows occurred in the fi .* operation.

ans =

0 1.0000 1.0000 1.0000 1.0000

a*a'
Warning: 4 product overflows occurred in the fi * operation.
Warning: 3 sum overflows occurred in the fi * operation.

ans =

1.0000

The final example above is a complex multiplication that requires both
multiplication and addition operations. The warnings inform you of overflows
and underflows in both.

Because overflows and underflows are logged as warnings, you can use the
dbstop MATLAB function with the syntax

dbstop if warning

to find the exact lines in an M-file that are causing overflows or underflows.

Use

dbstop if warning fi:underflow

to stop only on lines that cause an underflow. Use

dbstop if warning fi:overflow

to stop only on lines that cause an overflow.

5-9

5 Working with fipref Objects

Accessing Logged Information with Functions
When the fipref LoggingMode property is set to on, you can use the following
functions to return logged information to the MATLAB command line:

• maxlog — Returns the maximum real-world value

• minlog — Returns the minimum value

• noperations — Returns the number of quantization operations

• noverflows — Returns the number of overflows

• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any assignment or math
operation in order to log information about that operation. To clear the log,
use the function resetlog.

For example, consider the following. First turn logging on, then perform
operations, and then finally get information about the operations:

fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
maxlog(x)

ans =

3

minlog(x)

ans =

-1.5000

noperations(x)

ans =

4

5-10

Using fipref Objects to Set Logging Preferences

noverflows(x)

ans =

2

nunderflows(x)

ans =

1

Next, reset the log and request the same information again. Note that the
functions return empty [], because logging has been reset since the operations
were run:

resetlog(x)
maxlog(x)

ans =

[]

minlog(x)

ans =

[]

noperations(x)

ans =

[]

noverflows(x)

ans =

[]

5-11

5 Working with fipref Objects

nunderflows(x)

ans =

[]

Using Min/Max Logging with Doubles Override to
Choose Scaling
Choosing the scaling for the fixed-point variables in your algorithms can be
difficult. In the Fixed-Point Toolbox, you can use a combination of doubles
override and min/max logging to help you discover the numerical ranges that
your fixed-point data types need to cover. These ranges dictate the appropriate
scalings for your fixed-point data types. In general, the procedure is

1 Set the DataType property of all the numerictype objects in your algorithm
to double. This enables you to run the algorithm in floating-point mode.

2 Set the fipref LoggingMode property to on.

3 Use the maxlog and minlog functions to log the maximum and minimum
values achieved by the variables in your algorithm in floating-point mode.

4 Use the information obtained in step 3 to set the fixed-point scaling for
each variable in your algorithm such that the full numerical range of each
variable is representable by its data type and scaling.

A detailed example of this process is shown in the Fixed-Point Toolbox
“Fixed-Point Doubles Override, Min/Max Logging, and Scaling” demo.

5-12

fipref Object Functions

fipref Object Functions
The following functions operate directly on fipref objects:

• disp

• fipref

• reset

• savefipref

You can learn about the functions associated with fipref objects in the
Function Reference.

5-13

5 Working with fipref Objects

5-14

6

Working with numerictype
Objects

Constructing numerictype Objects
(p. 6-2)

Teaches you how to create
numerictype objects

numerictype Object Properties
(p. 6-6)

Tells you how to find more
information about the properties
associated with numerictype objects,
and shows you how to set these
properties

The numerictype Structure (p. 6-10) Presents the numerictype object as
a MATLAB structure, and gives the
valid fields and settings for those
fields

Using numerictype Objects to Share
Data Type and Scaling Settings
(p. 6-12)

Gives an example of using a
numerictype object to share
modular data type and scaling
information among multiple fi
objects

numerictype Object Functions
(p. 6-15)

Introduces the functions in the
toolbox that operate directly on
numerictype objects

6 Working with numerictype Objects

Constructing numerictype Objects
numerictype objects define the data type and scaling attributes of fi objects.
You can create numerictype objects in the Fixed-Point Toolbox in one of two
ways:

• You can use the numerictype constructor function to create a new object.

• You can use the numerictype constructor function to copy an existing
numerictype object.

To get started, type

T = numerictype

to create a default numerictype object.

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

You can use the numerictype constructor function in the following ways:

• T = numerictype creates a default numerictype object.

• T = numerictype(s) creates a numerictype object with Fixed-point:
binary point scaling, signedness s, 16-bit word length and 15-bit fraction
length.

• T = numerictype(s,w) creates a numerictype object with Fixed-point:
binary point scaling, signedness s, word length w and 15-bit fraction
length.

• T = numerictype(s,w,f) creates a numerictype object with
Fixed-point: binary point scaling, signedness s, word length w and
fraction length f.

6-2

Constructing numerictype Objects

• T = numerictype(s,w,slope,bias) creates a numerictype object with
Fixed-point: slope and bias scaling, signedness s, word length w,
slope, and bias.

• T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)
creates a numerictype object with Fixed-point: slope and bias
scaling, signedness s, word length w, slopeadjustmentfactor,
fixedexponent, and bias.

• T = numerictype(property1,value1, ...) allows you to set properties
for a numerictype object using property name/property value pairs.

• T = numerictype(T1, property1, value1, ...) allows you to make a
copy of an existing numerictype object, while modifying any or all of the
property values.

Examples of Constructing numerictype Objects
For example, the following creates a signed numerictype object with a 32-bit
word length and 30-bit fraction length.

T = numerictype(1, 32, 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

If you omit the argument f, it is automatically set to the best precision
possible.

T = numerictype(1, 32)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32

6-3

6 Working with numerictype Objects

FractionLength: 15

If you omit w and f, they are set automatically to 16 bits and the best precision
possible, respectively.

T = numerictype(1)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

Constructing a numerictype Object with Property
Name/Property Value Pairs
You can use property name/property value pairs to set numerictype properties
when you create the object.

T = numerictype('Signed', true, 'DataTypeMode', ...
'Fixed-point: slope and bias', 'WordLength', 32, 'Slope', ...
2^-2, 'Bias', 4)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 32
Slope: 0.25
Bias: 4

6-4

Constructing numerictype Objects

Copying a numerictype Object
To copy a numerictype object, simply use assignment as in the following
example:

T = numerictype;
U = T;
isequal(T,U)

ans =

1

6-5

6 Working with numerictype Objects

numerictype Object Properties
All the properties of a numerictype object are writable. However, the
numerictype properties of a fi object are not writable once the fi object
has been created:

• Bias — Bias

• DataType — Data type category

• DataTypeMode — Data type and scaling mode

• FixedExponent — Fixed-point exponent

• SlopeAdjustmentFactor — Slope adjustment

• FractionLength — Fraction length of the stored integer value, in bits

• Scaling — Fixed-point scaling mode

• Signed — Signed or unsigned

• Slope — Slope

• WordLength — Word length of the stored integer value, in bits

These properties are described in detail in Chapter 9, “Property Reference”.
There are two ways to specify properties for numerictype objects in the
Fixed-Point Toolbox. Refer to the following sections:

• “Setting numerictype Properties at Object Creation” on page 6-6

• “Using Direct Property Referencing with numerictype Objects” on page 6-7

• “Setting numerictype Properties in the Model Explorer” on page 6-7

Setting numerictype Properties at Object Creation
You can set properties of numerictype objects at the time of object creation
by including properties after the arguments of the numerictype constructor
function. For example, to set the word length to 32 bits and the fraction
length to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

6-6

numerictype Object Properties

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

Using Direct Property Referencing with numerictype
Objects
You can reference directly into a property for setting or retrieving numerictype
object property values using MATLAB structure-like referencing. You do this
by using a period to index into a property by name.

For example, to get the word length of T,

T.WordLength

ans =

32

To set the fraction length of T,

T.FractionLength = 31

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 31

Setting numerictype Properties in the Model Explorer
You can view and change the properties for any numerictype object defined
in the MATLAB workspace in the Model Explorer. Open the Model Explorer
by selecting View > Model Explorer in any Simulink model, or by typing
daexplr at the MATLAB command line.

6-7

6 Working with numerictype Objects

The figure below shows the Model Explorer when you define the following
numerictype objects in the MATLAB workspace:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

U = numerictype('DataTypeMode', 'Fixed-point: slope and bias')

U =

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 16
Slope: 2^-15
Bias: 0

Select the Base Workspace node in the Model Hierarchy pane to view
the current objects in the Contents pane. When you select a numerictype

6-8

numerictype Object Properties

object in the Contents pane, you can view and change its properties in the
Dialog pane.

6-9

6 Working with numerictype Objects

The numerictype Structure
The numerictype object contains all the data type and scaling attributes of a
fi object. The object acts the same way as any MATLAB structure, except that
it only lets you set valid values for defined fields. The following table shows
the possible settings of each field of the structure that are valid for fi objects.

DataTypeMode
Data-
Type Scaling Signed

Word-
Length

Fraction-
Length Slope Bias

Fully specified fixed-point data types

Fixed-point:
binary point
scaling

fixed BinaryPoint 1/0 w f 1 0

Fixed-point:
slope and bias
scaling

fixed SlopeBias 1/0 w N/A s b

Partially specified fixed-point data type

Fixed-point:
unspecified
scaling

fixed Unspecified 1/0 w N/A N/A N/A

Built-in data types

double double N/A 1 64 0 1 0

single single N/A 1 32 0 1 0

boolean boolean N/A 0 1 0 1 0

int8 fixed BinaryPoint 1 8 0 1 0

int16 fixed BinaryPoint 1 16 0 1 0

int32 fixed BinaryPoint 1 32 0 1 0

uint8 fixed BinaryPoint 0 8 0 1 0

uint16 fixed BinaryPoint 0 16 0 1 0

uint32 fixed BinaryPoint 0 32 0 1 0

6-10

The numerictype Structure

You cannot change the numerictype properties of a fi object after fi object
creation.

Properties That Affect the Slope
The Slope field of the numerictype structure is related to the
SlopeAdjustmentFactor and FixedExponent properties by

The FixedExponent and FractionLength properties are related by

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored Integer Value and Real World Value
The numerictype StoredIntegerValue and RealWorldValue properties are
related according to

which is equivalent to

If any of these properties is updated, the others are modified accordingly.

6-11

6 Working with numerictype Objects

Using numerictype Objects to Share Data Type and Scaling
Settings

You can use a numerictype object to define common data type and scaling
rules that you would like to use for many fi objects. You can then create
multiple fi objects, using the same numerictype object for each. The
following example shows the creation of a numerictype object, which is then
used to create two fi objects with the same numerictype attributes:

format long g
T = numerictype('WordLength',32,'FractionLength',28)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 28

a = fi(pi,T)

a =

3.1415926553309

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 28

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

6-12

Using numerictype Objects to Share Data Type and Scaling Settings

b = fi(pi/2, T)

b =

1.5707963258028

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 28

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

The following example shows the creation of a numerictype object with
[Slope Bias] scaling, which is then used to create two fi objects with the
same numerictype attributes:

T = numerictype('scaling','slopebias','slope', 2^2, 'bias', 0)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 16
Slope: 2^2
Bias: 0

c = fi(pi, T)

c =

4

6-13

6 Working with numerictype Objects

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 16
Slope: 2^2
Bias: 0

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

d = fi(pi/2, T)

d =

0

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 16
Slope: 2^2
Bias: 0

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

6-14

numerictype Object Functions

numerictype Object Functions
The following functions operate directly on numerictype objects:

• divide

• isequal

• isnumerictype

You can learn about the functions associated with numerictype objects in the
Function Reference.

6-15

6 Working with numerictype Objects

6-16

7

Working with quantizer
Objects

Constructing quantizer Objects
(p. 7-2)

Explains how to create quantizer
objects.

quantizer Object Properties (p. 7-4) Outlines the properties of the
quantizer objects

Quantizing Data with quantizer
Objects (p. 7-5)

Discusses using quantizer objects
to quantize data –how and what
quantizing data does

Transformations for Quantized Data
(p. 7-7)

Offers a brief explanation of
transforming quantized data
between representations

quantizer Object Functions (p. 7-8) Introduces the functions in the
toolbox that operate directly on
quantizer objects

7 Working with quantizer Objects

Constructing quantizer Objects
You can use quantizer objects to quantize data sets before you pass them to
fi objects. You can create quantizer objects in the Fixed-Point Toolbox in
one of two ways:

• You can use the quantizer constructor function to create a new object.

• You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

q = quantizer

q =

DataMode = fixed
RoundMode = floor

OverflowMode = saturate
Format = [16 15]

Max = reset
Min = reset

NOverflows = 0
NUnderflows = 0
NOperations = 0

To copy a quantizer object, simply use assignment as in the following
example:

q = quantizer;
r = q;
isequal(q,r)

ans =

1

A listing of all the properties of the quantizer object q you just created is
displayed along with the associated property values. All property values

7-2

Constructing quantizer Objects

are set to defaults when you construct a quantizer object this way. See
“quantizer Object Properties” on page 7-4 for more details.

7-3

7 Working with quantizer Objects

quantizer Object Properties
The following properties of quantizer objects are always writable:

• DataMode – Type of arithmetic used in quantization

• Format – Data format of a quantizer object

• OverflowMode – Overflow-handling mode

• RoundMode – Rounding mode

See Chapter 9, “Property Reference” for more details about these properties,
including their possible values.

For example, to create a fixed-point quantizer object with

• The Format property value set to [16,14]

• The OverflowMode property value set to 'saturate'

• The RoundMode property value set to 'ceil'

type

q =
quantizer('datamode','fixed','format',[16,14],'overflowmode',...

'saturate','roundmode','ceil')

You do not have to include quantizer object property names when you set
quantizer object property values.

For example, you can create quantizer object q from the previous example
by typing

q = quantizer('fixed',[16,14],'saturate','ceil')

Note You do not have to include default property values when you construct
a quantizer object. In this example, you could leave out 'fixed' and
'saturate'.

7-4

Quantizing Data with quantizer Objects

Quantizing Data with quantizer Objects
You construct a quantizer object to specify the quantization parameters
to use when you quantize data sets. You can use the quantize function to
quantize data according to a quantizer object’s specifications.

Once you quantize data with a quantizer object, its state values might
change.

The following example shows

• How you use quantize to quantize data

• How quantization affects quantizer object states

• How you reset quantizer object states to their default values using reset

1 Construct an example data set and a quantizer object.

randn('state',0);
x = randn(100,4);
q = quantizer([16,14]);

2 Retrieve the values of the max and noverflows states.

q.max

ans =
reset

q.noverflows

ans =
0

3 Quantize the data set according to the quantizer object’s specifications.

y = quantize(q,x);

4 Check the values of max and noverflows.

q.max

7-5

7 Working with quantizer Objects

ans =
2.3726

q.noverflows

ans =
15

5 Reset the quantizer states and check them.

reset(q)
q.max

ans =
reset

q.noverflows

ans =
0

7-6

Transformations for Quantized Data

Transformations for Quantized Data
You can convert data values from numeric to hexadecimal or binary according
to a quantizer object’s specifications.

Use

• num2bin to convert data to binary

• num2hex to convert data to hexadecimal

• hex2num to convert hexadecimal data to numeric

• bin2num to convert binary data to numeric

For example,

q = quantizer([3 2]);
x = [0.75 -0.25

0.50 -0.50
0.25 -0.75
0 -1];

b = num2bin(q,x)

b =
011
010
001
000
111
110
101
100

produces all two’s complement fractional representations of 3-bit fixed-point
numbers.

7-7

7 Working with quantizer Objects

quantizer Object Functions
The functions in the table below operate directly on quantizer objects

bin2num copyobj denormalmax denormalmin disp

eps exponentbias exponentlength exponentmax exponentmin

fractionlength get hex2num isequal length

max min noperations noverflows num2bin

num2hex num2int nunderflows quantize quantizer

randquant range realmax realmin reset

round set tostring wordlength

You can learn about the functions associated with quantizer objects in the
Function Reference.

7-8

8

Interoperability with Other
Products

Using fi Objects with Simulink
(p. 8-2)

Describes how to pass fixed-point
data back and forth between the
MATLAB workspace and Simulink
models using Simulink blocks

Using fi Objects with Signal
Processing Blockset (p. 8-7)

Describes how to pass fixed-point
data back and forth between the
MATLAB workspace and Simulink
models using Signal Processing
Blockset blocks

Using the Fixed-Point Toolbox with
Embedded MATLAB (p. 8-11)

Discusses the use of Fixed-Point
Toolbox with Embedded MATLAB,
including supported functions and
limitations

Using fi Objects with Filter Design
Toolbox (p. 8-29)

Provides a brief description of how to
use fi objects with dfilt objects in
the Filter Design Toolbox

8 Interoperability with Other Products

Using fi Objects with Simulink
Fixed-Point Toolbox fi objects can be used to pass fixed-point data back and
forth between the MATLAB workspace and Simulink models.

Reading Fixed-Point Data from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model via the From Workspace block. To do so, the data must be in structure
format with a fi object in the values field. In array format, the From
Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by
parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be
read back into a Simulink model in structure format by a From Workspace
block.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the To Workspace
block dialog. Otherwise, fixed-point data is converted to double and written
to the workspace as double.

For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use the
From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440

8-2

Using fi Objects with Simulink

0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

s.signals.values = a

s =

signals: [1x1 struct]

s.signals.dimensions = 2

s =

signals: [1x1 struct]

s.time = [0:10]'

s =

8-3

8 Interoperability with Other Products

signals: [1x1 struct]
time: [11x1 double]

The From Workspace block in the following model has the fi structure s in
the Data parameter.

Remember, to write fixed-point data to the MATLAB workspace as a fi
object, select the Log fixed-point data as a fi object check box on the To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

In the model, the following parameters in the Solver pane of the
Configuration Parameters dialog have the indicated settings:

• Start time – 0.0

• Stop time – 10.0

• Type – Fixed-step

• Solver – discrete (no continuous states)

• Fixed step size (fundamental sample time) – 1.0

8-4

Using fi Objects with Simulink

The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values

ans =

0 -8.7041
13.4634 6.5938
14.5488 15.8296
2.2578 10.5117

-12.1089 -4.4707
-15.3428 -15.3428
-4.4707 -12.1089
10.5117 2.2578
15.8296 14.5488
6.5938 13.4634

-8.7041 0

8-5

8 Interoperability with Other Products

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 25

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Logging Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as fi objects. To enable signal logging for a
signal, select the Log signal data option in the signal’s Signal Properties
dialog box. For more information, refer to “Logging Signals” in the Using
Simulink documentation.

When you log signals from a referenced model or Stateflow® chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next largest data storage container size.

Accessing Fixed-Point Block Data During Simulation
Simulink provides an application program interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. Fixed-point signal information is returned to you via this API
as fi objects. For more information on the API, refer to “Accessing Block Data
During Simulation” in the Using Simulink documentation.

8-6

Using fi Objects with Signal Processing Blockset

Using fi Objects with Signal Processing Blockset
Fixed-Point Toolbox fi objects can be used to pass fixed-point data between
the MATLAB workspace and models using Signal Processing Blockset blocks.

Reading Fixed-Point Signals from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model using the Signal From Workspace and Triggered Signal From
Workspace blocks from the Signal Processing Blockset. Enter the name of the
defined fi variable in the Signal parameter of the Signal From Workspace or
Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace
Fixed-point output from a model can be written to the MATLAB workspace
via the Signal To Workspace or Triggered To Workspace block from the Signal
Processing Blockset. The fixed-point data is always written as a 2-D or 3-D
array.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace or Triggered To Workspace block dialog. Otherwise, fixed-point
data is converted to double and written to the workspace as double.

For example, you can use the following code to create a fi object in the
MATLAB workspace. You can then use the Signal From Workspace block to
bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794

8-7

8 Interoperability with Other Products

-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

The Signal From Workspace block in the following model has these settings:

• Signal – a

• Sample time – 1

• Samples per frame – 2

• Form output after final data value by – Setting to zero

The following parameters in the Solver pane of the Configuration
Parameters dialog have the indicated settings:

• Start time – 0.0

• Stop time – 10.0

• Type – Fixed-step

• Solver – discrete (no continuous states)

• Fixed step size (fundamental sample time) – 1.0

8-8

Using fi Objects with Signal Processing Blockset

Remember, to write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

The Signal To Workspace block writes the result of the simulation to the
MATLAB workspace as a fi object.

yout =

(:,:,1) =

0.8415 -0.1319
-0.8415 -0.9561

(:,:,2) =

1.0504 1.6463

8-9

8 Interoperability with Other Products

0.7682 0.3324

(:,:,3) =

-1.7157 -1.2383
0.2021 0.6795

(:,:,4) =

0.3776 -0.6157
-0.9364 -0.8979

(:,:,5) =

1.4015 1.7508
0.5772 0.0678

(:,:,6) =

-0.5440 0
-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 17
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

8-10

Using the Fixed-Point Toolbox with Embedded MATLAB

Using the Fixed-Point Toolbox with Embedded MATLAB
The Embedded MATLAB Function block lets you compose a MATLAB
language function in a Simulink model that generates embeddable code.
When you simulate the model or generate code for a target environment, a
function in an Embedded MATLAB Function block generates efficient C code.
This code meets the strict memory and data type requirements of embedded
target environments. In this way, Embedded MATLAB Function blocks bring
the power of MATLAB for the embedded environment into Simulink.

For more information on using Embedded MATLAB, refer to the following
sections in the Simulink documentation:

• Embedded MATLAB Function block reference page

• “Using the Embedded MATLAB Function Block”

• “Embedded MATLAB Function Block Reference”

Supported Functions and Limitations of Fixed-Point
Embedded MATLAB
You can use a significant subset of Fixed-Point Toolbox functions with
Embedded MATLAB. The Fixed-Point Toolbox functions supported for use
with Embedded MATLAB are listed in the table below. The following general
limitations always apply to the use of the Fixed-Point Toolbox with Embedded
MATLAB:

• Dot notation is not supported

• Word lengths larger than 32 bits are not supported

• It is illegal to change the fimath or numerictype of a given variable once it
has been created

• The double, single, and boolean values of the DataTypeMode and
DataType properties are not supported

• convergent rounding is not supported

• The numel function works the same as MATLAB numel for fi objects in
Embedded MATLAB, rather than returning 1 as in the Fixed-Point Toolbox

8-11

8 Interoperability with Other Products

To learn about the general limitations on the use of Embedded MATLAB
that also apply to use with the Fixed-Point Toolbox, refer to “Unsupported
MATLAB Features and Limitations” in the Simulink documentation.

Note To simulate models using fixed-point data types in Simulink, you must
have a Simulink Fixed Point licence.

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB

Function Remarks/Limitations

abs —

all —

any —

complex —

conj —

ctranspose —

disp —

divide • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object

• Complex and imaginary divisors are not supported

double —

end —

eps —

eq • Not supported for fixed-point signals with different biases

8-12

Using the Fixed-Point Toolbox with Embedded MATLAB

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB (Continued)

Function Remarks/Limitations

fi • Use to create a fixed-point constant or variable in Embedded
MATLAB

• The syntax fi('PropertyName',PropertyValue...) is
not supported. To use property name/property value pairs,
you must first specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...)

• Works for constant input values only; that is, the value of the input
must be known at compile time

• numerictype object information must be available for nonfixed-point
Simulink inputs

fimath • Fixed-point signals coming in to an Embedded MATLAB Function
block from Simulink are assigned the fimath object defined in the
Embedded MATLAB Function dialog in the Model Explorer

• Use to create fimath objects in Embedded MATLAB code

ge • Not supported for fixed-point signals with different biases

gt • Not supported for fixed-point signals with different biases

horzcat —

imag —

int8, int16, int32 —

iscolumn —

isempty —

isfi —

isfimath —

isfinite —

isinf —

isnan —

isnumeric —

8-13

8 Interoperability with Other Products

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB (Continued)

Function Remarks/Limitations

isnumerictype —

isreal —

isrow —

isscalar —

issigned —

isvector —

le • Not supported for fixed-point signals with different biases

length —

logical —

lowerbound —

lsb —

lt • Not supported for fixed-point signals with different biases

max • Supported for 1-D and 2-D arrays only

min • Supported for 1-D and 2-D arrays only

minus • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object

mtimes • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object

ndims —

ne • Not supported for fixed-point signals with different biases

numberofelements • numberofelements and numel both work the same as MATLAB
numel for fi objects in Embedded MATLAB

numerictype • Fixed-point signals coming in to an Embedded MATLAB Function
block from Simulink are assigned a numerictype object that is
populated with the signal’s data type and scaling information

• Returns the data type when the input is a nonfixed-point signal

• Use to create numerictype objects in Embedded MATLAB code

8-14

Using the Fixed-Point Toolbox with Embedded MATLAB

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB (Continued)

Function Remarks/Limitations

plus • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object

pow2 • For the syntax pow2(a, K), K must be a constant; that is, its value
must be known at compile time so that it can be cast to a fi object

range —

real —

realmax —

realmin —

repmat —

reshape • Supported for 1-D and 2-D arrays only

sign —

single —

size —

subsasgn —

subsref —

sum • Supported for 1-D and 2-D arrays only

times • Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object

transpose —

uint8, uint16, uint32 —

uminus —

uplus —

8-15

8 Interoperability with Other Products

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB (Continued)

Function Remarks/Limitations

upperbound —

vertcat —

Using the Model Explorer with Fixed-Point Embedded
MATLAB
You can specify parameters for an Embedded MATLAB Function block in a
fixed-point model using the Model Explorer. Try the following:

1 Type emlnew at the MATLAB command line to open a new Simulink model
populated with an Embedded MATLAB Function block.

2 Open the Model Explorer by selecting View > Model Explorer from
your model.

3 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer and select the Embedded MATLAB Function node. The Model
Explorer now appears as follows:

8-16

Using the Fixed-Point Toolbox with Embedded MATLAB

The parameters in the Simulink input signal properties group box in the
Dialog pane apply to Embedded MATLAB Function blocks in models that
use fixed-point data types.

FIMATH for fixed-point input signals
Define the fimath object to be associated with Simulink fixed-point or
integer signals entering the Embedded MATLAB Function block as
inputs. You can do this in either of two ways:

• Fully define the fimath object in the parameter value box using
Fixed-Point Toolbox MATLAB code.

8-17

8 Interoperability with Other Products

• Enter a variable name of a fimath object that is defined in the
MATLAB or model workspace.

The default fimath object entered for this parameter emulates C-style
math.

Treat inherited integer signals as
Choose whether to treat inherited integer signals as integers or
fixed-point data.

• If you select Integer, Simulink integer inputs to the Embedded
MATLAB Function block will be treated as MATLAB integers.

• If you select Fixed-point, Simulink integer inputs to the Embedded
MATLAB Function block will be treated as Fixed-Point Toolbox fi
objects.

Sharing Fixed-Point Embedded MATLAB Models
Sometimes you might need to share a fixed-point model using the Embedded
MATLAB Function block with a coworker. When you do, make sure to move
any variables you define in the MATLAB workspace, including fimath objects,
to the model workspace. For example, try the following:

1 Type emlnew at the MATLAB command line to open a new Simulink model
populated with an Embedded MATLAB Function block.

2 Define a fimath object in the MATLAB workspace that you want to use for
any Simulink fixed-point signal entering the Embedded MATLAB Function
block as an input:

F = fimath('RoundMode','Floor','OverflowMode','Wrap',...
'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

F =

RoundMode: floor
OverflowMode: wrap
ProductMode: KeepLSB

ProductWordLength: 32

8-18

Using the Fixed-Point Toolbox with Embedded MATLAB

SumMode: KeepLSB
SumWordLength: 32
CastBeforeSum: true

3 Open the Model Explorer by selecting View > Model Explorer from
your model.

4 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer and select the Embedded MATLAB Function node.

5 Enter the variable F into the FIMATH for fixed-point input signals
parameter on the Dialog pane and click Apply. You have now defined the
fimath object for any Simulink fixed-point signal entering the Embedded
MATLAB Function as an input.

6 Select the Base Workspace node in the Model Hierarchy pane. You can
see the variable F that you have defined in the MATLAB workspace listed
in the Contents pane. If you were to send this model to a coworker, they
would have to define that same variable in their MATLAB workspace to get
the same results as you with this model.

7 Cut the variable F from the base workspace and paste it into the model
workspace listed under the node for your model, in this case untitled*.
The Model Explorer now looks like this:

8-19

8 Interoperability with Other Products

You can now e-mail your model to a coworker, and because the variables
needed to run the model are included in the workspace of the model itself,
your coworker can run the model and get the correct results without
performing any extra steps.

Example: Implementing a Fixed-Point Direct Form
FIR Using Embedded MATLAB
This example leads you through creating a fixed-point, low-pass, direct form
FIR filter in Simulink using the Fixed-Point Toolbox and Embedded MATLAB
in the following sections:

8-20

Using the Fixed-Point Toolbox with Embedded MATLAB

• “I. Program the Embedded MATLAB Block” on page 8-21

• “II. Prepare the Inputs” on page 8-22

• “III. Create the Model” on page 8-23

• “IV. Define the Input fimath Using the Model Explorer” on page 8-26

• “V. Run the Simulation” on page 8-28

I. Program the Embedded MATLAB Block

1 Place an Embedded MATLAB Function block in a new model. The block is
located in the Simulink User-Defined Functions library.

2 Save your model as eML_fi.mdl.

3 Double-click the Embedded MATLAB Function block in your model to open
the Embedded MATLAB Editor. Type or copy and paste the following
MATLAB code, including comments, into the Editor:

function [yout,zf] = dffirdemo(b, x, zi)
%eML_fi doc model example
%Initialize the output signal yout and the final conditions zf
Fy = fimath('RoundMode','Floor','OverflowMode','Wrap',...

'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32);

Ty = numerictype(1,12,8);
yout = fi(zeros(size(x)),'numerictype',Ty,'fimath',Fy);
zf = zi;

% FIR filter code
for k=1:length(x);

% Update the states: z = [x(k);z(1:end-1)]
zf(:) = [x(k);zf(1:end-1)];
% Form the output: y(k) = b*z
yout(k) = b*zf;

end

% Plot the outputs only in simulation.
% This does not generate C code.
figure;

8-21

8 Interoperability with Other Products

subplot(211);plot(x); title('Noisy Signal');grid;
subplot(212);plot(yout); title('Filtered Signal');grid;

The Editor should now appear as follows:

II. Prepare the Inputs
Define the filter coefficients b, noise x, and initial conditions zi by typing the
following at the MATLAB command line:

8-22

Using the Fixed-Point Toolbox with Embedded MATLAB

b = fi_fir_coefficients;
load mtlb
x = mtlb;
n = length(x);
noise = sin(2*pi*2140*(0:n-1)'./Fs);
x = x + noise;
zi = zeros(length(b),1);

III. Create the Model

1 Add blocks to your model to create the system shown below.

8-23

8 Interoperability with Other Products

2 Set the block parameters in the model to the following values:

Block Parameter Value

Constant value b

Interpret vector
parameters as 1-D

unselected

Sample time inf

Output data type
mode

Specify via dialog

Output data type sfix(12)

Output scaling
mode

Use specified
scaling

Constant

Output scaling
value

2^-12

Constant value x+noise

Interpret vector
parameters as 1-D

unselected

Sample time 1

Output data type
mode

Specify via dialog

Output data type sfix(12)

Output scaling
mode

Use specified
scaling

Constant1

Output scaling
value

2^-9

8-24

Using the Fixed-Point Toolbox with Embedded MATLAB

Block Parameter Value

Constant value zi

Interpret vector
parameters as 1-D

unselected

Sample time inf

Output data type
mode

Specify via dialog

Output data type sfix(12)

Output scaling
mode

Use specified
scaling

Constant2

Output scaling
value

2^-9

Variable name yout

Limit data points to
last

inf

Decimation 1

Frames Concatenate frames
(2-D array)

Signal To Workspace

Log fixed-point data
as a fi object

selected

Variable name zf

Limit data points to
last

inf

Decimation 1

Frames Concatenate frames
(2-D array)

Signal To
Workspace1

Log fixed-point data
as a fi object

selected

8-25

8 Interoperability with Other Products

Block Parameter Value

Variable name noisyx

Limit data points to
last

inf

Decimation 1

Frames Concatenate frames
(2-D array)

Signal To
Workspace2

Log fixed-point data
as a fi object

selected

IV. Define the Input fimath Using the Model Explorer

1 Define the fimath object used in your Embedded MATLAB code in the
MATLAB workspace:

Fy = fimath('RoundMode','Floor','OverflowMode','Wrap',...
'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

Fy =

RoundMode: floor
OverflowMode: wrap
ProductMode: KeepLSB

ProductWordLength: 32
SumMode: KeepLSB

SumWordLength: 32
CastBeforeSum: true

2 Open the Model Explorer for the model by selecting View > Model
Explorer.

3 Click the Base Workspace node in the Model Hierarchy pane of the
Model Explorer. You see the fimath Fy you just defined listed in the
Contents pane.

8-26

Using the Fixed-Point Toolbox with Embedded MATLAB

4 Click the eML_fi > Embedded MATLAB Function node in the Model
Hierarchy pane. The dialog for the Embedded MATLAB Function block
appears in the Dialog pane of the Model Explorer.

5 Enter Fy in the FIMATH for fixed-point input signals parameter on
the Embedded MATLAB Function dialog in the Dialog pane of the Model
Explorer and click Apply. This step sets the fimath object for the three
inputs entering into the Embedded MATLAB Function block in your model.
The Model Explorer now appears as follows:

8-27

8 Interoperability with Other Products

V. Run the Simulation

1 You can now run the simulation by selecting your model and typing
Ctrl+T. While the simulation is running, information will output to the
MATLAB command line. You can look at the plots of the noisy signal and
the filtered signal.

2 Now build your Embedded MATLAB code by selecting your model and
typing Ctrl+B. While the code is building, information will output to the
MATLAB command line. A directory called eML_fi_grt_rtw will be created
in your current working directory.

3 Navigate to eML_fi_grt_rtw > eML_fi.c. In this file you can see the code
that has been generated from your model. Search on the comment in your
code

%eML_fi doc model example

This brings you to the beginning of the section of the code that is generated
from your Embedded MATLAB Function block.

8-28

Using fi Objects with Filter Design Toolbox

Using fi Objects with Filter Design Toolbox
When the Arithmetic property is set to 'fixed', you can use an existing
fi object as the input, states, or coefficients of a dfilt object in the Filter
Design Toolbox. Also, fixed-point filters in the Filter Design Toolbox return
fi objects as outputs. Refer to the Filter Design Toolbox documentation for
more information.

8-29

8 Interoperability with Other Products

8-30

9

Property Reference

fi Object Properties (p. 9-2) Defines the fi object properties

fimath Object Properties (p. 9-5) Defines the fimath object properties

fipref Object Properties (p. 9-10) Defines the fipref object properties

numerictype Object Properties
(p. 9-12)

Defines the numerictype object
properties

quantizer Object Properties (p. 9-16) Defines the quantizer object
properties

9 Property Reference

fi Object Properties
The properties associated with fi objects are described in the following
sections in alphabetical order.

Note The fimath properties and numerictype properties are also properties
of the fi object. Refer to “fimath Object Properties” on page 9-5 and
“numerictype Object Properties” on page 9-12 for more information.

bin
Stored integer value of a fi object in binary.

data
Numerical real-world value of a fi object

dec
Stored integer value of a fi object in decimal.

double
Real-world value of a fi object stored as a MATLAB double.

fimath
fimath object associated with a fi object. The default fimath object has
the following settings:

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

9-2

fi Object Properties

To learn more about fimath properties, refer to “fimath Object Properties”
on page 9-5.

hex
Stored integer value of a fi object in hexadecimal.

int
Stored integer value of a fi object, stored in a built-in MATLAB integer data
type. You can also use int8, int16, int32, uint8, uint16, and uint32 to get
the stored integer value of a fi object in these formats.

NumericType
Structure containing all the data type and scaling attributes of a fi object.
The numerictype object acts the same way as any MATLAB structure, except
that it only lets you set valid values for defined fields. The following table
shows the possible settings of each field of the structure that are valid for fi
objects.

DataTypeMode
Data-
Type Scaling Signed

Word-
Length

Fraction-
Length Slope Bias

Fully specified fixed-point data types

Fixed-point:
binary point
scaling

fixed BinaryPoint 1/0 w f 1 0

Fixed-point:
slope and bias
scaling

fixed SlopeBias 1/0 w N/A s b

Partially specified fixed-point data type

Fixed-point:
unspecified
scaling

fixed Unspecified 1/0 w N/A N/A N/A

Built-in data types

double double N/A 1 64 0 1 0

9-3

9 Property Reference

DataTypeMode
Data-
Type Scaling Signed

Word-
Length

Fraction-
Length Slope Bias

single single N/A 1 32 0 1 0

boolean boolean N/A 0 1 0 1 0

int8 fixed BinaryPoint 1 8 0 1 0

int16 fixed BinaryPoint 1 16 0 1 0

int32 fixed BinaryPoint 1 32 0 1 0

uint8 fixed BinaryPoint 0 8 0 1 0

uint16 fixed BinaryPoint 0 16 0 1 0

uint32 fixed BinaryPoint 0 32 0 1 0

You cannot change the numerictype properties of a fi object after fi object
creation.

oct
Stored integer value of a fi object in octal.

9-4

fimath Object Properties

fimath Object Properties
The properties associated with fimath objects are described in the following
sections in alphabetical order.

CastBeforeSum
Whether both operands are cast to the sum data type before addition. Possible
values of this property are 1 (cast before sum) and 0 (do not cast before sum).

The default value of this property is 1 (true).

MaxProductWordLength
Maximum allowable word length for the product data type.

The default value of this property is 128.

MaxSumWordLength
Maximum allowable word length for the sum data type.

The default value of this property is 128.

OverflowMode
Overflow-handling mode. The value of the OverflowMode property can be
one of the following strings.

• saturate — Saturate to maximum or minimum value of the fixed-point
range on overflow.

• wrap — Wrap on overflow. This mode is also known as two’s complement
overflow.

The default value of this property is saturate.

9-5

9 Property Reference

ProductFractionLength
Fraction length, in bits, of the product data type. This value can be any
positive or negative integer. The product data type defines the data type of
the result of a multiplication of two fi objects.

The default value of this property is automatically set to the best precision
possible based on the value of the product word length.

ProductMode
Defines how the product data type is determined. In the following
descriptions, let A and B be real operands, with [word length, fraction length]
pairs [Wa Fa] and [Wb Fb], respectively. Wp is the product data type word
length and Fp is the product data type fraction length.

• FullPrecision — The full precision of the result is kept. An
error is generated if the calculated word length is greater than
MaxProductWordLength.

• KeepLSB — (keep least significant bits) You specify the product data type
word length, while the fraction length is set to maintain the least significant
bits of the product. In this mode, full precision is kept, but overflow is
possible. This behavior models the C language integer operations.

• KeepMSB — (keep most significant bits) You specify the product data
type word length, while the fraction length is set to maintain the most
significant bits of the product. In this mode, overflow is prevented, but
precision may be lost.

9-6

fimath Object Properties

where

• SpecifyPrecision — You specify both the word length and fraction length
of the product data type.

The default value of this property is FullPrecision.

ProductWordLength
Word length, in bits, of the product data type. This value must be a positive
integer. The product data type defines the data type of the result of a
multiplication of two fi objects.

The default value of this property is 32.

RoundMode
The rounding mode. The value of the RoundMode property can be one of the
following strings:

• ceil — Round toward positive infinity.

• convergent — Round toward nearest. Ties round to even numbers.

• fix — Round toward zero.

• floor — Round toward negative infinity.

• nearest — Round toward nearest. Ties round to the number toward
positive infinity.

The default value of this property is nearest.

9-7

9 Property Reference

SumFractionLength
The fraction length, in bits, of the sum data type. This value can be any
positive or negative integer. The sum data type defines the data type of the
result of a sum of two fi objects.

The default value of this property is automatically set to the best precision
possible based on the sum word length.

SumMode
Defines how the sum data type is determined. In the following descriptions,
let A and B be real operands, with [word length, fraction length] pairs [Wa
Fa] and [Wb Fb], respectively. Ws is the sum data type word length and Fs is
the sum data type fraction length.

Note In the case where there are two operands, as in A + B,
NumberOfSummands is 2, and ceil(log2(NumberOfSummands)) = 1. In
sum(A), the NumberOfSummands is size(A,1).

• FullPrecision — The full precision of the result is kept. An error is
generated if the calculated word length is greater than MaxSumWordLength.

where

integer length = − −() + ()max , ceil logW F W F NumberOfSummandsa a b b 2(()

• KeepLSB — (keep least significant bits) You specify the sum data type word
length, while the fraction length is set to maintain the least significant bits
of the sum. In this mode, full precision is kept, but overflow is possible.
This behavior models the C language integer operations.

9-8

fimath Object Properties

• KeepMSB — (keep most significant bits) You specify the sum data type word
length, while the fraction length is set to maintain the most significant
bits of the sum and no more fractional bits than necessary. In this mode,
overflow is prevented, but precision may be lost.

where

integer length = − −() + ()max , ceil logW F W F NumberOfSummandsa a b b 2(()

• SpecifyPrecision — You specify both the word length and fraction length
of the sum data type.

The default value of this property is FullPrecision.

SumWordLength
The word length, in bits, of the sum data type. This value must be a positive
integer. The sum data type defines the data type of the result of a sum of
two fi objects.

The default value of this property is 32.

9-9

9 Property Reference

fipref Object Properties
The properties associated with fipref objects are described in the following
sections in alphabetical order.

FimathDisplay
Display options for the fimath attributes of a fi object

• full — Displays all of the fimath attributes of a fixed-point object

• none — None of the fimath attributes are displayed.

The default value of this property is full.

LoggingMode
Logging options for operations performed on fi objects

• off — No logging

• on — Information is logged for future operations

Overflows and underflows for assignment, plus, minus, and multiplication
operations are logged as warnings when LoggingMode is set to on.

When LoggingMode is on, you can also use the following functions to log
information to the MATLAB command line:

• maxlog — Returns the maximum real-world value

• minlog — Returns the minimum value

• noperations — Returns the number of quantization operations

• noverflows — Returns the number of overflows

• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any assignment or math
operation in order to log information about that operation. To clear the log,
use the function resetlog.

9-10

fipref Object Properties

The default value of this property of off.

NumericTypeDisplay
Display options for the numerictype attributes of a fi object

• full — Displays all the numerictype attributes of a fixed-point object

• none — None of the numerictype attributes are displayed.

• short — Displays an abbreviated notation of the fixed-point data type and
scaling of a fixed-point object in the format xWL,FL where

- x is s for signed and u for unsigned.

- WL is the word length.

- FL is the fraction length.

The default value of this property is full.

NumberDisplay
Display options for the value of a fi object

• bin — Displays the stored integer value in binary format

• dec — Displays the stored integer value in unsigned decimal format

• RealWorldValue — Displays the stored integer value in the format
specified by the MATLAB format function

• hex — Displays the stored integer value in hexadecimal format

• int — Displays the stored integer value in signed decimal format

• none — No value is displayed.

The default value of this property is RealWorldValue. In this mode, the value
of a fi object is displayed in the format specified by the MATLAB format
function: +, bank, compact, hex, long, long e, long g, loose, rat, short,
short e, or short g. fi objects in rat format are displayed according to

9-11

9 Property Reference

numerictype Object Properties
The properties associated with numerictype objects are described in the
following sections in alphabetical order.

Bias
Bias associated with a fi object. The bias is part of the numerical
representation used to interpret a fixed-point number. Along with the
slope, the bias forms the scaling of the number. Fixed-point numbers can
be represented as

where the slope can be expressed as

DataType
Data type associated with a fi object. The possible value of this property are:

• boolean — Built-in MATLAB boolean data type

• double — Built-in MATLAB double data type

• fixed — Fixed-point or integer data type

• single — Built-in MATLAB single data type

The default value of this property is fixed.

DataTypeMode
Data type and scaling associated with a fi object. The possible values of
this property are

• boolean — Built-in boolean

• double — Built-in double

9-12

numerictype Object Properties

• Fixed-point: binary point scaling — Fixed-point data type and
scaling defined by the word length and fraction length

• Fixed-point: slope and bias scaling — Fixed-point data type and
scaling defined by the slope and bias

• Fixed-point: unspecified scaling —- A temporary setting that is
only allowed at fi object creation, in order to allow for the automatic
assignment of a binary point best-precision scaling

• int8 — Built-in signed 8-bit integer

• int16 — Built-in signed 16-bit integer

• int32 — Built-in signed 32-bit integer

• single — Built-in single

• uint8 — Built-in unsigned 8-bit integer

• uint16 — Built-in unsigned 16-bit integer

• uint32 —- Built-in unsigned 32-bit integer

The default value of this property is Fixed-point: binary point scaling.

FixedExponent
Fixed-point exponent associated with a fi object. The exponent is part of the
numerical representation used to express a fixed-point number. Fixed-point
numbers can be represented as

where the slope can be expressed as

The exponent of a fixed-point number is equal to the negative of the fraction
length:

9-13

9 Property Reference

FractionLength
Value of the FractionLength property is the fraction length of the stored
integer value of a fi object, in bits. The fraction length can be any integer
value. If you do not specify the fraction length of a fi object, it is set to the
best possible precision.

This property is automatically set by default to the best precision possible
based on the value of the word length.

Scaling
Fixed-point scaling mode of a fi object. The possible values of this property
are

• BinaryPoint — Scaling for the fi object is defined by the fraction length.

• SlopeBias — Scaling for the fi object is defined by the slope and bias.

• Unspecified -— A temporary setting that is only allowed at fi object
creation, in order to allow for the automatic assignment of a binary point
best precision scaling

• Integer -— The fi object is an integer; the binary point is understood to be
at the far right of the word, making the fraction length zero.

The default value of this property is BinaryPoint.

Signed
Whether a fi object is signed.

The default value of this property is 1 (signed).

Slope
Slope associated with a fi object. The slope is part of the numerical
representation used to express a fixed-point number. Along with the bias,
the slope forms the scaling of a fixed-point number. Fixed-point numbers
can be represented as

9-14

numerictype Object Properties

where the slope can be expressed as

SlopeAdjustmentFactor
Slope adjustment associated with a fi object. The slope adjustment is
equivalent to the fractional slope of a fixed-point number. The fractional slope
is part of the numerical representation used to express a fixed-point number.
Fixed-point numbers can be represented as

where the slope can be expressed as

WordLength
Value of the WordLength property is the word length of the stored integer
value of a fixed-point object, in bits. The word length can be any positive
integer value.

The default value of this property is 16.

9-15

9 Property Reference

quantizer Object Properties
The properties associated with quantizer objects are described in the
following sections in alphabetical order.

DataMode
Type of arithmetic used in quantization. This property can have the following
values:

• fixed — Signed fixed-point calculations

• float — User-specified floating-point calculations

• double — Double-precision floating-point calculations

• single — Single-precision floating-point calculations

• ufixed — Unsigned fixed-point calculations

The default value of this property is fixed.

When you set the DataMode property value to double or single, the Format
property value becomes read only.

Format
Data format of a quantizer object. The interpretation of this property value
depends on the value of the DataMode property.

For example, whether you specify the DataMode property with fixed- or
floating-point arithmetic affects the interpretation of the data format property.
For some DataMode property values, the data format property is read only.

The following table shows you how to interpret the values for the Format
property value when you specify it, or how it is specified in read-only cases.

9-16

quantizer Object Properties

DataMode Property
Value Interpreting the Format Property Values

fixed or ufixed You specify the Format property value as a vector. The number of
bits for the quantizer object word length is the first entry of this
vector, and the number of bits for the quantizer object fraction
length is the second entry.

The word length can range from 2 to the limits of memory on your
PC. The fraction length can range from 0 to one less than the word
length.

float You specify the Format property value as a vector. The number of
bits you want for the quantizer object word length is the first entry
of this vector, and the number of bits you want for the quantizer
object exponent length is the second entry.

The word length can range from 2 to the limits of memory on your
PC. The exponent length can range from 0 to 11.

double The Format property value is specified automatically (is read only)
when you set the DataMode property to double. The value is [64 11],
specifying the word length and exponent length, respectively.

single The Format property value is specified automatically (is read only)
when you set the DataMode property to single. The value is [32 8],
specifying the word length and exponent length, respectively.

OverflowMode
Overflow-handling mode. The value of the OverflowMode property can be
one of the following strings:

• saturate — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest
and smallest representable numbers (as specified by the data format
properties), these values are quantized to the value of either the largest or
smallest representable value, depending on which is closest.

• wrap — Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest
and smallest representable numbers (as specified by the data format

9-17

9 Property Reference

properties), these values are wrapped back into that range using modular
arithmetic relative to the smallest representable number.

The default value of this property is saturate.

Note Floating-point numbers that extend beyond the dynamic range overflow
to ±inf.

The OverflowMode property value is set to saturate and becomes a read-only
property when you set the value of the DataMode property to float, double,
or single.

RoundMode
Rounding mode. The value of the RoundMode property can be one of the
following strings:

• ceil — Round up to the next allowable quantized value.

• convergent — Round to the nearest allowable quantized value. Numbers
that are exactly halfway between the two nearest allowable quantized
values are rounded up only if the least significant bit (after rounding)
would be set to 0.

• fix — Round negative numbers up and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next allowable quantized value.

• nearest — Round to the nearest allowable quantized value. Numbers
that are halfway between the two nearest allowable quantized values are
rounded up.

The default value of this property is floor.

9-18

10

Functions — Categorical
List

• “Bitwise Functions” on page 10-2

• “Constructor and Property Functions” on page 10-2

• “Data Manipulation Functions” on page 10-3

• “Data Type Functions” on page 10-5

• “Data Quantizing Functions” on page 10-6

• “Element-Wise Logical Operator Functions” on page 10-6

• “Math Operation Functions” on page 10-6

• “Matrix Manipulation Functions” on page 10-8

• “Plotting Functions” on page 10-9

• “Radix Conversion Functions” on page 10-12

• “Relational Operator Functions” on page 10-13

• “Statistics Functions” on page 10-14

• “Subscripted Assignment and Reference Functions” on page 10-15

• “fi Object Functions” on page 10-16

• “fimath Object Functions” on page 10-18

• “fipref Object Functions” on page 10-19

• “numerictype Object Functions” on page 10-20

• “quantizer Object Functions” on page 10-21

10 Functions — Categorical List

Bitwise Functions
bitand Return the bitwise AND of two fi

objects

bitcmp Return the bitwise complement of a
fi object

bitget Return the bit at a certain position

bitor Return the bitwise OR of two fi
objects

bitset Set the bit at a certain position

bitshift Shift bits specified number of places

bitxor Return the bitwise exclusive OR of
two fi objects

Constructor and Property Functions
copyobj Make an independent copy of a

quantizer object

fi Construct a fi object

fimath Construct a fimath object

fipref Construct a fipref object

get Return the property values of a
quantizer object

inspect Display Property Inspector

numerictype Construct a numerictype object

quantizer Construct a quantizer object

reset Reset one or more objects to their
initial conditions

savefipref Save fi preferences for the next
MATLAB session

10-2

Data Manipulation Functions

set Set or display property values for
quantizer objects

stripscaling Return the stored integer of a fi
object

tostring Convert a quantizer object to a
string

Data Manipulation Functions
denormalmax Return the largest denormalized

quantized number for a quantizer
object

denormalmin Return the smallest denormalized
quantized number for a quantizer
object

eps Return the quantized relative
accuracy for fi objects or quantizer
objects

exponentbias Return the exponent bias for a
quantizer object

exponentlength Return the exponent length of a
quantizer object

exponentmax Return the maximum exponent for a
quantizer object

exponentmin Return the minimum exponent for a
quantizer object

fractionlength Return the fraction length of a
quantizer object

10-3

10 Functions — Categorical List

isequal Determine whether the real-world
values of two fi objects are equal,
or determine whether the properties
of two fimath, numerictype, or
quantizer objects are equal

isfi Determine whether a variable is a
fi object

isfimath Determine whether a variable is a
fimath object

isnumerictype Determine whether a variable is a
numerictype object

ispropequal Determine whether the properties of
two fi objects are equal

issigned Determine whether a fi object is
signed

lowerbound Return lower bound of range of fi
object

lsb Return the scaling of the least
significant bit of a fi object

range Return the numerical range of a fi
object or quantizer object

realmax Return the largest positive
fixed-point value or quantized
number

realmin Return the smallest positive
normalized fixed-point value or
quantized number

rescale Change the scaling of a fi object

upperbound Return upper bound of range of fi
object

wordlength Return the word length of a
quantizer object

10-4

Data Type Functions

Data Type Functions
double Return the double-precision

floating-point real-world value of a
fi object

int Return the smallest built-in integer
in which the stored integer value of
a fi object will fit

int16 Return the stored integer value of a
fi object as a built-in int16

int32 Return the stored integer value of a
fi object as a built-in int32

int8 Return the stored integer value of a
fi object as a built-in int8

intmax Return the largest positive stored
integer value representable by the
numerictype of a fi object

intmin Return smallest stored integer value
representable by numerictype of fi
object

logical Convert numeric values to logical

single Return the single-precision
floating-point real-world value of a
fi object

uint16 Return the stored integer value of a
fi object as a built-in uint16

uint32 Return the stored integer value of a
fi object as a built-in uint32

uint8 Return the stored integer value of a
fi object as a built-in uint8

10-5

10 Functions — Categorical List

Data Quantizing Functions
convergent Apply convergent rounding

quantize Apply a quantizer object to data

randquant Generate a uniformly distributed,
quantized random number using a
quantizer object

round Round input data using a quantizer
object without checking for overflow

Element-Wise Logical Operator Functions
all Determine if all array elements are

nonzero

and Find logical AND of array or scalar
inputs

any Determine if any array elements are
nonzero

not Find logical NOT of array or scalar
input

or Find logical OR of array or scalar
inputs

Math Operation Functions
abs Return the absolute value of a fi

object

add Add two objects using a fimath
object

10-6

Math Operation Functions

complex Construct a complex fi object from
real and imaginary parts

conj Return the complex conjugate of a
fi object

divide Divide two objects using a
numerictype object

imag Return the imaginary part

innerprodintbits Return the number of integer
bits needed for a fixed-point inner
product

minus Return the matrix difference
between fi objects

mpy Multiply two objects using a fimath
object

mtimes Return the matrix product of fi
objects

plus Return the matrix sum of fi objects

pow2 Multiply by a power of 2

real Return real part of complex number

sign Perform signum function on array

sub Subtract two objects using a fimath
object

sum Return sum of array elements

times Return the result of
element-by-element multiplication
of fi objects

uminus Negate the elements of a fi object
array

uplus Unary plus

10-7

10 Functions — Categorical List

Matrix Manipulation Functions
buffer Buffer signal vector into matrix of

data frames

ctranspose Return the complex conjugate
transpose of a fi object

diag Return diagonal matrices or the
diagonals of a matrix

disp Display an object

end Indicate last index of array

hankel Return a Hankel matrix

horzcat Horizontally concatenate two or
more fi objects

ipermute Inverse permute the dimensions of a
multidimensional array

iscolumn Determine whether a fi object is a
column vector

isempty Determine if array is empty

isfinite Determine if array elements are
finite

isinf Determine if array elements are
infinite

isnan Determine if array elements are
NaN

isnumeric Determine if input is numeric array

isobject Determine if input is MATLAB
OOPS object

isreal Determine if array elements are real

isrow Determine whether a fi object is a
row vector

isscalar Determine if input is scalar

10-8

Plotting Functions

isvector Determine if input is vector

length Return the length of a vector

ndims Return number of array dimensions

permute Rearrange the dimensions of a
multidimensional array

repmat Replicate and tile an array

reshape Reshape array

size Return array dimensions

squeeze Remove singleton dimensions

toeplitz Create Toeplitz matrix

transpose Return the transpose

tril Return the lower triangular part of
a matrix

vertcat Vertically concatenate two or more
fi objects

Plotting Functions
area Create a filled area 2–D plot

bar Create a vertical bar graph

barh Create a horizontal bar graph

clabel Create contour plot elevation labels

comet Create a 2–D comet plot

comet3 Create a 3–D comet plot

compass Plot arrows emanating from the
origin

coneplot Plot velocity vectors as cones in a
3–D vector field

10-9

10 Functions — Categorical List

contour Create a contour graph of a matrix

contour3 Create a 3–D contour plot

contourc Create a two-level contour plot
computation

contourf Create a filled 2–D contour plot

errorbar Plot error bars along a curve

etreeplot Plot elimination tree

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

ezmesh Easy-to-use 3–D mesh plotter

ezplot Easy-to-use function plotter

ezplot3 Easy-to-use 3–D parametric curve
plotter

ezpolar Easy-to-use polar coordinate plotter

ezsurf Easy-to-use 3–D colored surface
plotter

ezsurfc Easy-to-use combination
surface/contour plotter

feather Plot velocity vectors

fplot Plot a function between specified
limits

gplot Plot set of nodes using an adjacency
matrix

hist Create histogram plot

histc Return histogram count

line Create line object

loglog Create log-log scale plot

mesh Create mesh plot

meshc Create mesh plot with contour plot

10-10

Plotting Functions

meshz Create mesh plot with curtain plot

patch Create patch graphics object

pcolor Create pseudocolor plot

plot Create linear 2–D plot

plot3 Create 3–D line plot

plotmatrix Draw scatter plots

plotyy Create graph with y-axes on both
right and left sides

polar Plot polar coordinates

quiver Create quiver or velocity plot

quiver3 Create 3–D quiver or velocity plot

rgbplot Plot colormap

ribbon Create ribbon plot

rose Create angle histogram

scatter Create a scatter or bubble plot

scatter3 Create a 3–D scatter or bubble plot

semilogx Create semilogarithmic plot with
logarithmic x-axis

semilogy Create semilogarithmic plot with
logarithmic y-axis

slice Create volumetric slice plot

spy Visualize sparsity pattern

stairs Create stairstep graph

stem Plot discrete sequence data

stem3 Plot 3–D discrete sequence data

streamribbon Create a 3–D stream ribbon plot

streamslice Draw streamlines in slice planes

streamtube Create a 3–D stream tube plot

10-11

10 Functions — Categorical List

surf Create 3–D shaded surface plot

surfc Create 3–D shaded surface plot with
contour plot

surfl Create a surface plot with
colormap-based lighting

surfnorm Compute and display 3–D surface
normals

text Create text object in current axes

treeplot Plot picture of tree

trimesh Create triangular mesh plot

triplot Create 2–D triangular plot

trisurf Create triangular surface plot

triu Return the upper triangular part of
a matrix

voronoi Create Voronoi diagram

voronoin Create n-dimensional Voronoi
diagram

waterfall Create waterfall plot

xlim Set or query x-axis limits

ylim Set or query y-axis limits

Radix Conversion Functions
bin Return the binary representation of

the stored integer of a fi object as
a string

bin2num Convert a two’s complement
binary string to a number using a
quantizer object

10-12

Relational Operator Functions

dec Return the unsigned decimal
representation of the stored integer
of a fi object as a string

hex Return the hexadecimal
representation of the stored
integer of a fi object as a string

hex2num Convert a hexadecimal string to a
number using a quantizer object

num2bin Convert a number to a binary string
using a quantizer object

num2hex Convert a number to its hexadecimal
equivalent using a quantizer object

num2int Convert a number to a signed integer

oct Return the octal representation of
the stored integer of a fi object as
a string

sdec Return signed decimal
representation of stored integer
of fi object as string

Relational Operator Functions
eq Determine whether the real-world

values of two fi objects are equal

ge Determine whether the real-world
value of one fi object is greater than
or equal to another

gt Determine whether the real-world
value of one fi object is greater than
another

10-13

10 Functions — Categorical List

le Determine whether the real-world
value of a fi object is less than or
equal to another

lt Determine whether the real-world
value of a fi object is less than
another

ne Determine whether the real-world
values of two fi objects are not equal

Statistics Functions
max Return largest element in array of

fi objects

maxlog Return largest real-world value
of fi object or maximum value of
quantizer object before quantization

min Return smallest element in array of
fi objects

minlog Return smallest real-world value
of fi object or minimum value of
quantizer object before quantization

noperations Return number of operations

noverflows Return number of overflows

numberofelements Return number of data elements in
fi array

nunderflows Return number of underflows

resetlog Clear log for a fi or quantizer
object

10-14

Subscripted Assignment and Reference Functions

Subscripted Assignment and Reference Functions
subsasgn Subscripted assignment

subsref Subscripted reference

10-15

10 Functions — Categorical List

fi Object Functions
The functions in the table below operate directly on fi objects.

abs all and any area

bar barh bin bitand bitcmp

bitget bitor bitshift bitxor buffer

clabel comet comet3 compass complex

coneplot conj contour contour3 contourc

contourf ctranspose dec diag double

end eps eq errorbar etreeplot

ezcontour ezcontourf ezmesh ezplot ezplot3

ezpolar ezsurf ezsurfc feather fi

fimath fplot ge get gplot

gt hankel hex hist histc

horzcat imag innerprodintbits inspect int

int8 int16 int32 intmax intmin

ipermute iscolumn isempty isequal isfi

isfinite isinf isnan isnumeric isobject

ispropequal isreal isrow isscalar issigned

isvector le length line logical

lowerbound lsb lt max mesh

meshc meshz min minus mtimes

ndims ne not numberofelements numerictype

oct or patch pcolor permute

plot plot3 plotmatrix plotyy plus

polar pow2 quantizer quiver quiver3

range real realmax realmin repmat

rescale reshape rgbplot ribbon rose

10-16

fi Object Functions

scatter scatter3 sdec sign single

size slice spy stairs stem

stem3 streamribbon streamslice streamtube stripscaling

subsasgn subsref sum surf surfc

surfl surfnorm text times toeplitz

transpose treeplot tril trimesh triplot

trisurf triu uint8 uint16 uint32

uminus uplus upperbound vertcat voronoi

voronoin waterfall xlim ylim zlim

10-17

10 Functions — Categorical List

fimath Object Functions
The following functions operate directly on fimath objects.

• add

• disp

• fimath

• isequal

• isfimath

• mpy

• sub

10-18

fipref Object Functions

fipref Object Functions
The following functions operate directly on fipref objects.

• disp

• fipref

• reset

• savefipref

10-19

10 Functions — Categorical List

numerictype Object Functions
The following functions operate directly on numerictype objects.

• divide

• isequal

• isnumerictype

10-20

quantizer Object Functions

quantizer Object Functions
The functions in the table below operate directly on quantizer objects.

bin2num copyobj denormalmax denormalmin disp

eps exponentbias exponentlength exponentmax exponentmin

fractionlength get hex2num isequal length

max min noperations noverflows num2bin

num2hex num2int nunderflows quantize quantizer

randquant range realmax realmin reset

round set tostring wordlength

10-21

10 Functions — Categorical List

10-22

11

Functions — Alphabetical
List

abs

Purpose Return the absolute value of a fi object

Syntax abs(a)

Description abs(a) returns the absolute value of fi object a.

When the object a is real and has a signed data type, the absolute value
of the most negative value is problematic since it is not representable.
In this case, the absolute value saturates to the most positive value
representable by the data type if the OverflowMode property is set to
saturate. If OverflowMode is wrap, the absolute value of the most
negative value has no effect.

abs does not support complex inputs.

Examples The following example shows the difference between the absolute value
results for the most negative value representable by a signed data type
when OverflowMode is saturate or wrap.

P = fipref('NumericTypeDisplay','full','FimathDisplay','full');
a = fi(-128)

a =

-128

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 8

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

11-2

abs

CastBeforeSum: true
abs(a)

ans =

127.9961

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 8

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a.OverflowMode = 'wrap'

a =

-128

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 8

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

11-3

abs

MaxSumWordLength: 128
CastBeforeSum: true

abs(a)

ans =

-128

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 8

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

11-4

add

Purpose Add two objects using a fimath object

Syntax c = F.add(a,b)

Description c = F.add(a,b) adds objects a and b using fimath object F. This is
helpful in cases when you want to override the fimath objects of a and
b, or if the fimath objects of a and b are different.

a and b must have the same dimensions unless one is a scalar. If either
a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in
numeric type, then the built-in object is cast to the word length of the
fi object, preserving best-precision fraction length.

Examples In this example, c is the 32-bit sum of a and b with fraction length 16:

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision','SumWordLength',

32,'SumFractionLength',16);
c = F.add(a,b)

c =

5.8599

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 16

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

11-5

add

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

Algorithm c = F.add(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a + b;

except that the fimath properties of a and b are not modified when
you use the functional form.

See Also divide, fi, fimath, mpy, numerictype, sub, sum

11-6

all

Purpose Determine if all array elements are nonzero

Description Refer to the MATLAB all reference page for more information.

11-7

and

Purpose Find logical AND of array or scalar inputs

Description Refer to the MATLAB and reference page for more information.

11-8

any

Purpose Determine if any array elements are nonzero

Description Refer to the MATLAB any reference page for more information.

11-9

area

Purpose Create a filled area 2–D plot

Description Refer to the MATLAB area reference page for more information.

11-10

bar

Purpose Create a vertical bar graph

Description Refer to the MATLAB bar reference page for more information.

11-11

barh

Purpose Create a horizontal bar graph

Description Refer to the MATLAB barh reference page for more information.

11-12

bin

Purpose Return the binary representation of the stored integer of a fi object
as a string

Syntax bin(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

bin(a) returns the stored integer of fi object a in unsigned binary
format as a string.

Examples The following code

a = fi([-1 1],1,8,7);
bin(a)

returns

10000000 01111111

See Also dec, hex, int, oct

11-13

bin2num

Purpose Convert a two’s complement binary string to a number using a
quantizer object

Syntax y = bin2num(q,b)

Description y = bin2num(q,b) uses the properties of quantizer object q to
convert binary string b to numeric array y. When b is a cell array
containing binary strings, y is a cell array of the same dimension
containing numeric arrays. The fixed-point binary representation is
two’s complement. The floating-point binary representation is in IEEE
Standard 754 style.

bin2num and num2bin are inverses of one another. Note that num2bin
always returns the strings in a column.

Examples Create a quantizer object and an array of numeric strings. Convert
the numeric strings to binary strings, then use bin2num to convert them
back to numeric strings.

q=quantizer([4 3]);
[a,b]=range(q);
x=(b:-eps(q):a)';
b = num2bin(q,x)

b =

0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101

11-14

bin2num

1100
1011
1010
1001
1000

bin2num performs the inverse operation of num2bin.

y=bin2num(q,b)

y =

0.8750
0.7500
0.6250
0.5000
0.3750
0.2500
0.1250

0
-0.1250
-0.2500
-0.3750
-0.5000
-0.6250
-0.7500
-0.8750
-1.0000

See Also hex2num, num2bin, num2hex, num2int

11-15

bitand

Purpose Return the bitwise AND of two fi objects

Syntax c = bitand(a, b)

Description c = bitand(a, b) returns the bitwise AND of fi objects a and b. The
numerictype of a and b must be identical. If the numerictype is signed,
then the bit representation of the stored integer is in two’s complement
representation.

bitand only supports fi objects with fixed-point data types.

See Also bitcmp, bitget, bitor, bitset, bitxor

11-16

bitcmp

Purpose Return the bitwise complement of a fi object

Syntax c = bitcmp(a)

Description c = bitcmp(a) returns the bitwise complement of fi object a as
an n-bit nonnegative integer. If a has a signed numerictype, then
the bit representation of the stored integer is in two’s complement
representation.

bitcmp only supports fi objects with fixed-point data types.

See Also bitand, bitget, bitor, bitset, bitxor

11-17

bitget

Purpose Return the bit at a certain position

Syntax c = bitget(a, bit)

Description c = bitget(a, bit) returns the value of the bit at position bit in a. a
must be a nonnegative integer, and bit must be a number between 1
and the number of bits in the floating-point integer representation of a.
If a has a signed numerictype, then the bit representation of the stored
integer is in two’s complement representation.

bitget only supports fi objects with fixed-point data types.

See Also bitand, bitcmp, bitor, bitset, bitxor

11-18

bitor

Purpose Return the bitwise OR of two fi objects

Syntax c = bitor(a, b)

Description c = bitor(a, b) returns the bitwise OR of fi objects a and b. The
numerictype of a and b must be identical. If the numerictype is signed,
then the bit representation of the stored integer is in two’s complement
representation.

bitor only supports fi objects with fixed-point data types.

See Also bitand, bitcmp, bitget, bitset, bitxor

11-19

bitset

Purpose Set the bit at a certain position

Syntax c = bitset(a, bit)
c = bitset(a, bit, v)

Description c = bitset(a, bit) sets bit position bit in a to 1 (on).

c = bitset(a, bit, v) sets bit position bit in a to v. v must be
either 0 (off) or 1 (on).

a must be a nonnegative integer, and bit must be a number between 1
and the number of bits in the floating-point integer representation of a.
If a has a signed numerictype, then the bit representation of the stored
integer is in two’s complement representation.

bitset only supports fi objects with fixed-point data types.

See Also bitand, bitcmp, bitget, bitor, bitxor

11-20

bitshift

Purpose Shift bits specified number of places

Syntax c = bitshift(a, k)

Description c = bitshift(a, k) returns the value of a shifted by k bits.

fi object a can be any fixed-point numeric type. The OverflowMode and
RoundMode properties are obeyed.

bitshift only supports fi objects with fixed-point data types.

See Also bitand, bitcmp, bitget, bitor, bitset, bitxor

11-21

bitxor

Purpose Return the bitwise exclusive OR of two fi objects

Syntax c = bitxor(a, b)

Description c = bitxor(a, b) returns the bitwise exclusive OR of fi objects a and
b. The numerictype of a and b must be identical. If the numerictype
is signed, then the bit representation of the stored integer is in two’s
complement representation.

bitxor only supports fi objects with fixed-point data types.

See Also bitand, bitcmp, bitget, bitor, bitset

11-22

buffer

Purpose Buffer signal vector into matrix of data frames

Description Refer to the Signal Processing Toolbox buffer reference page for more
information.

11-23

clabel

Purpose Create contour plot elevation labels

Description Refer to the MATLAB clabel reference page for more information.

11-24

comet

Purpose Create a 2–D comet plot

Description Refer to the MATLAB comet reference page for more information.

11-25

comet3

Purpose Create a 3–D comet plot

Description Refer to the MATLAB comet3 reference page for more information.

11-26

compass

Purpose Plot arrows emanating from the origin

Description Refer to the MATLAB compass reference page for more information.

11-27

complex

Purpose Construct a complex fi object from real and imaginary parts

Syntax c = complex(a,b)
c = complex(a)

Description The complex function constructs a complex fi object from real and
imaginary parts.

c = complex(a,b) returns the complex result a + bi, where a and b
are identically sized real N-D arrays, matrices, or scalars of the same
data type. When b is all zero, c is complex with an all-zero imaginary
part. This is in contrast to the addition of a + 0i, which returns a
strictly real result.

c = complex(a) for a real fi object a returns the complex result
a + bi with real part a and an all-zero imaginary part. Even though its
imaginary part is all zero, c is complex.

The numerictype and fimath objects of the leftmost input that is a fi
object are applied to the output c.

See Also imag, real

11-28

coneplot

Purpose Plot velocity vectors as cones in a 3–D vector field

Description Refer to the MATLAB coneplot reference page for more information.

11-29

conj

Purpose Return the complex conjugate of a fi object

Syntax conj(a)

Description conj(a) is the complex conjugate of fi object a.

When a is complex,

The numerictype and fimath objects of the input a are applied to the
output.

See Also complex, imag, real

11-30

contour

Purpose Create a contour graph of a matrix

Description Refer to the MATLAB contour reference page for more information.

11-31

contour3

Purpose Create a 3–D contour plot

Description Refer to the MATLAB contour3 reference page for more information.

11-32

contourc

Purpose Create a two-level contour plot computation

Description Refer to the MATLAB contourc reference page for more information.

11-33

contourf

Purpose Create a filled 2–D contour plot

Description Refer to the MATLAB contourf reference page for more information.

11-34

convergent

Purpose Apply convergent rounding

Syntax convergent(x)

Description convergent(x) rounds the elements of x to the nearest integer, except
in a tie, then rounds to the nearest even integer.

Examples MATLAB round and convergent differ in the way they treat values
whose fractional part is 0.5. In round, every tie is rounded up in
absolute value. convergent rounds ties to the nearest even integer.

x=[-3.5:3.5]';
[x convergent(x) round(x)]
ans =

-3.5000 -4.0000 -4.0000
-2.5000 -2.0000 -3.0000
-1.5000 -2.0000 -2.0000
-0.5000 0 -1.0000
0.5000 0 1.0000
1.5000 2.0000 2.0000
2.5000 2.0000 3.0000
3.5000 4.0000 4.0000

11-35

copyobj

Purpose Make an independent copy of a quantizer object

Syntax q1 = copyobj(q)
[q1,q2,...] = copyobj(obja,objb,...)

Description q1 = copyobj(q) makes a copy of quantizer object q and returns it
in q1.

[q1,q2,...] = copyobj(obja,objb,...)copies obja into q1, objb
into q2, and so on.

Using copyobj to copy a quantizer object is not the same as using the
command syntax q1 = q to copy a quantizer object. quantizer objects
have memory (their read-only properties). When you use copyobj, the
resulting copy is independent of the original item–it does not share the
original object’s memory, such as the values of the properties min, max,
noverflows, or noperations. Using q1 = q creates a new object that
is an alias for the original and shares the original object’s memory, and
thus its property values.

Examples q = quantizer('CoefficientFormat',[8 7]);
q1 = copyobj(q);

See Also quantizer, get, set

11-36

ctranspose

Purpose Return the complex conjugate transpose of a fi object

Syntax ctranspose(a)

Description ctranspose(a) returns the complex conjugate transpose of fi object a.
It is also called for the syntax a'.

See Also transpose

11-37

dec

Purpose Return the unsigned decimal representation of the stored integer of a
fi object as a string

Syntax dec(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

dec(a) returns the stored integer of fi object a in unsigned decimal
format as a string.

Examples The code

a = fi([-1 1],1,8,7);
dec(a)

returns

128 127

See Also bin, hex, int, oct, sdec

11-38

denormalmax

Purpose Return the largest denormalized quantized number for a quantizer
object

Syntax x = denormalmax(q)

Description x = denormalmax(q) is the largest positive denormalized quantized
number where q is a quantizer object. Anything larger than x is a
normalized number. Denormalized numbers apply only to floating-point
format. When q represents fixed-point numbers, this function returns
eps(q).

Examples q = quantizer('float',[6 3]);
x = denormalmax(q)

x =

0.1875

Algorithm When q is a floating-point quantizer object,

denormalmax(q) = realmin(q) - denormalmin(q)

When q is a fixed-point quantizer object,

denormalmax(q) = eps(q)

See Also denormalmin, eps, quantizer

11-39

denormalmin

Purpose Return the smallest denormalized quantized number for a quantizer
object

Syntax x = denormalmin(q)

Description x = denormalmin(q) is the smallest positive denormalized quantized
number where q is a quantizer object. Anything smaller than x
underflows to zero with respect to the quantizer object q. Denormalized
numbers apply only to floating-point format. When q represents a
fixed-point number, denormalmin returns eps(q).

Examples q = quantizer('float',[6 3]);
denormalmin(q)

ans =

0.0625

Algorithm When q is a floating-point quantizer object,

where Emin is equal to exponentmin(q).

When q is a fixed-point quantizer object,

where f is equal to fractionlength(q).

See Also denormalmax, eps, quantizer

11-40

diag

Purpose Return diagonal matrices or the diagonals of a matrix

Description Refer to the MATLAB diag reference page for more information.

11-41

disp

Purpose Display an object

Description Refer to the MATLAB disp reference page for more information.

11-42

divide

Purpose Divide two objects using a numerictype object

Syntax c = T.divide(a,b)

Description c = T.divide(a,b) performs division on the elements of a by the
elements of b using numerictype object T.

a and b must have the same dimensions unless one is a scalar. If either
a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in
numeric type, then the built-in object is cast to the word length of the
fi object, preserving best-precision fraction length.

If a and b are both MATLAB built-in doubles, then c is the
double-precision quotient a./b, and numerictype T is ignored.

Examples This example highlights the precision of the fi divide function.

First, create an unsigned fi object with an 80-bit word length and 2^-83
scaling, which puts the leading 1 of the representation into the most
significant bit. Initialize the object with double-precision floating-point
value 0.1, and examine the binary representation:

P =
fipref('NumberDisplay','bin','NumericTypeDisplay','short',...

'FimathDisplay','none');
a = fi(0.1, false, 80, 83)

a =

1100110011001100110011001100110011001100110011001101000000000000
0000000000000000
(bin)

u80,83
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100

11-43

divide

Notice that the infinite repeating representation is truncated after
52 bits, because the mantissa of an IEEE standard double-precision
floating-point number has 52 bits.

Contrast the above to calculating 1/10 in fixed-point arithmetic with the
quotient set to the same numeric type as before:

T = numerictype('Signed',false,'WordLength',80,...
'FractionLength',83);

a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin

ans =

1100110011001100110011001100110011001100110011001100110011001100
1100110011001100

Notice that when you use the divide function, the quotient is calculated
to the full 80 bits, regardless of the precision of a and b. Thus,
the fi object c represents 1/10 more precisely than IEEE standard
double-precision floating-point number can.

With 1000 bits of precision,

T = numerictype('Signed',false,'WordLength',1000,...
'FractionLength',1003);

a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin

ans =

1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100

11-44

divide

1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100

See Also add, fi, fimath, mpy, numerictype, sub, sum

11-45

double

Purpose Return the double-precision floating-point real-world value of a fi object

Syntax double(a)

Description Fixed-point numbers can be represented as

or, equivalently,

double(a) returns the real-world value of a fi object in double-precision
floating point.

See Also single

11-46

end

Purpose Indicate last index of array

Description Refer to the MATLAB end reference page for more information.

11-47

eps

Purpose Return the quantized relative accuracy for fi objects or quantizer
objects

Syntax eps(obj)

Description eps(obj) returns the value of the least significant bit of the value of
the fi object or quantizer object obj. The result of this function is
equivalent to that given by the Fixed-Point Toolbox lsb function.

See Also lsb

11-48

eq

Purpose Determine whether the real-world values of two fi objects are equal

Syntax c = eq(a,b)
a == b

Description c = eq(a,b) is called for the syntax ’a == b’ when a or b is a fi object.
a and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a == b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also ge, gt, isequal, le, lt, ne

11-49

errorbar

Purpose Plot error bars along a curve

Description Refer to the MATLAB errorbar reference page for more information.

11-50

etreeplot

Purpose Plot elimination tree

Description Refer to the MATLAB etreeplot reference page for more information.

11-51

exponentbias

Purpose Return the exponent bias for a quantizer object

Syntax b = exponentbias(q)

Description b = exponentbias(q) returns the exponent bias of the quantizer
object q. For fixed-point quantizer objects, exponentbias(q) returns 0.

Examples q = quantizer('double');
b = exponentbias(q)

b =

1023

Algorithm For floating-point quantizer objects,

where e = eps(q), and exponentbias is the same as the exponent
maximum.

For fixed-point quantizer objects, b = 0 by definition.

See Also eps, exponentlength, exponentmax, exponentmin

11-52

exponentlength

Purpose Return the exponent length of a quantizer object

Syntax e = exponentlength(q)

Description e = exponentlength(q) returns the exponent length of quantizer
object q. When q is a fixed-point quantizer object, exponentlength(q)
returns 0. This is useful because exponent length is valid whether the
quantizer object mode is floating point or fixed point.

Examples q = quantizer('double');
e = exponentlength(q)

e =

11

Algorithm The exponent length is part of the format of a floating-point quantizer
object [w e]. For fixed-point quantizer objects, e = 0 by definition.

See Also eps, exponentbias, exponentmax, exponentmin

11-53

exponentmax

Purpose Return the maximum exponent for a quantizer object

Syntax exponentmax(q)

Description exponentmax(q) returns the maximum exponent for quantizer object
q. When q is a fixed-point quantizer object, it returns 0.

Examples q = quantizer('double');
exponentmax(q)

ans =

1023

Algorithm For floating-point quantizer objects,

For fixed-point quantizer objects, by definition.

See Also eps, exponentbias, exponentlength, exponentmin

11-54

exponentmin

Purpose Return the minimum exponent for a quantizer object

Syntax emin = exponentmin(q)

Description emin = exponentmin(q) returns the minimum exponent for quantizer
object q. If q is a fixed-point quantizer object, exponentmin returns 0.

Examples q = quantizer('double');
emin = exponentmin(q)

emin =

-1022

Algorithm For floating-point quantizer objects,

For fixed-point quantizer objects, .

See Also eps, exponentbias, exponentlength, exponentmax

11-55

ezcontour

Purpose Easy-to-use contour plotter

Description Refer to the MATLAB ezcontour reference page for more information.

11-56

ezcontourf

Purpose Easy-to-use filled contour plotter

Description Refer to the MATLAB ezcontourf reference page for more information.

11-57

ezmesh

Purpose Easy-to-use 3–D mesh plotter

Description Refer to the MATLAB ezmesh reference page for more information.

11-58

ezplot

Purpose Easy-to-use function plotter

Description Refer to the MATLAB ezplot reference page for more information.

11-59

ezplot3

Purpose Easy-to-use 3–D parametric curve plotter

Description Refer to the MATLAB ezplot3 reference page for more information.

11-60

ezpolar

Purpose Easy-to-use polar coordinate plotter

Description Refer to the MATLAB ezpolar reference page for more information.

11-61

ezsurf

Purpose Easy-to-use 3–D colored surface plotter

Description Refer to the MATLAB ezsurf reference page for more information.

11-62

ezsurfc

Purpose Easy-to-use combination surface/contour plotter

Description Refer to the MATLAB ezsurfc reference page for more information.

11-63

feather

Purpose Plot velocity vectors

Description Refer to the MATLAB feather reference page for more information.

11-64

fi

Purpose Construct a fi object

Syntax a = fi(v)
a = fi(v,s)
a = fi(v,s,w)
a = fi(v,s,w,f)
a = fi(v,s,w,slope,bias)
a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias)
a = fi(v,T)
a = fi(v,T,F)
a = fi(...'PropertyName',PropertyValue...)
fi('PropertyName',PropertyValue...)

Description You can use the fi constructor function in the following ways.

• a = fi(v) returns a signed fixed-point object with value v, 16-bit
word length, and best-precision fraction length.

• a = fi(v,s) returns a fixed-point object with value v, signedness
s, 16-bit word length, and best-precision fraction length. s can be 0
(false) for unsigned or 1 (true) for signed.

• a = fi(v,s,w) returns a fixed-point object with value v, signedness
s, word length w, and best-precision fraction length.

• a = fi(v,s,w,f) returns a fixed-point object with value v,
signedness s, word length w, and fraction length f.

• a = fi(v,s,w,slope,bias) returns a fixed-point object with value
v, signedness s, word length w, slope, and bias.

• a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias)
returns a fixed-point object with value v, signedness s, word length w,
slopeadjustmentfactor, fixedexponent, and bias.

• a = fi(v,T) returns a fixed-point object with value v and
embedded.numerictype T. Refer to for more information on
numerictype objects.

11-65

fi

• fi(a,F) allows you to maintain the value and numerictype object of
fi object a, while changing its fimath object to F

• a = fi(v,T,F) returns a fixed-point object with value v,
embedded.numerictype T, and embedded.fimath F. Refer to for more
information on fimath objects.

• a = fi(...'PropertyName',PropertyValue...) and
fi('PropertyName',PropertyValue...) allow you to set fixed-point
objects for a fi object by property name/property value pairs.

The fi object has the following three general types of properties.

Note These properties are described in detail in “fi Object Properties”
on page 9-2 in the Properties Reference.

• “Data Properties” on page 11-66

• “fimath Properties” on page 11-67

• “numerictype Properties” on page 11-68

Data Properties

The data properties of a fi object are always writable.

• bin – Stored integer value of a fi object in binary

• data – Numerical real-world value of a fi object

• dec – Stored integer value of a fi object in decimal

• double – Real-world value of a fi object, stored as a MATLAB double

• hex – Stored integer value of a fi object in hexadecimal

• int – Stored integer value of a fi object, stored in a built-in MATLAB
integer data type. You can also use int8, int16, int32, uint8,
uint16, and uint32 to get the stored integer value of a fi object in
these formats

11-66

fi

• oct – Stored integer value of a fi object in octal

These properties are described in detail in “fi Object Properties” on
page 9-2.

fimath Properties

When you create a fi object, a fimath object is also automatically
created as a property of the fi object.

• fimath – fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a
fi object. The properties of the fimath object listed below are always
writable.

• CastBeforeSum – Whether both operands are cast to the sum data
type before addition

• MaxProductWordLength – Maximum allowable word length for the
product data type

• MaxSumWordLength – Maximum allowable word length for the sum
data type

• ProductFractionLength – Fraction length, in bits, of the product
data type

• ProductMode – Defines how the product data type is determined

• ProductWordLength – Word length, in bits, of the product data type

• RoundMode – Rounding mode

• SumFractionLength – Fraction length, in bits, of the sum data type

• SumMode – Defines how the sum data type is determined

• SumWordLength – Word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties”
on page 9-5.

11-67

fi

numerictype Properties

When you create a fi object, a numerictype object is also automatically
created as a property of the fi object.

• numerictype – Object containing all the numeric type attributes of
a fi object

The following numerictype properties are, by transitivity, also
properties of a fi object. The properties of the numerictype object listed
below are not writable once the fi object has been created. However,
you can create a copy of a fi object with new values specified for the
numerictype properties.

• Bias – Bias of a fi object

• DataType – Data type category associated with a fi object

• DataTypeMode – Data type and scaling mode of a fi object

• FixedExponent – Fixed-point exponent associated with a fi object

• SlopeAdjustmentFactor – Slope adjustment associated with a fi
object

• FractionLength – Fraction length of the stored integer value of
a fi object in bits

• Scaling – Fixed-point scaling mode of a fi object

• Signed – Whether a fi object is signed or unsigned

• Slope – Slope associated with a fi object

• WordLength – Word length of the stored integer value of a fi object
in bits

These properties are described in detail in “numerictype Object
Properties” on page 9-12.

11-68

fi

Examples
Note For information on the display format of fi objects, refer to
“Display Settings” on page 1-5.

Example 1

For example, the following creates a fi object with a value of pi, a word
length of 8 bits, and a fraction length of 3 bits.

a = fi(pi, 1, 8, 3)

a =

3.1250

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 3

Example 2

The value v can also be an array.

a = fi((magic(3)/10), 1, 16, 12)

a =

0.8000 0.1001 0.6001
0.3000 0.5000 0.7000
0.3999 0.8999 0.2000

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16

11-69

fi

FractionLength: 12

Example 3

If you omit the argument f, it is set automatically to the best precision
possible.

a = fi(pi, 1, 8)

a =

3.1563

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 5

Example 4

If you omit w and f, they are set automatically to 16 bits and the best
precision possible, respectively.

a = fi(pi, 1)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

11-70

fi

Example 5

You can use property name/property value pairs to set fi properties
when you create the object.

a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')

a =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

See Also fimath, fipref, numerictype, quantizer, “fi Object Properties” on
page 9-2

11-71

fimath

Purpose Construct a fimath object

Syntax F = fimath
F = fimath(...'PropertyName',PropertyValue...)

Description You can use the fimath constructor function in the following ways:

• F = fimath creates a default fimath object.

• F = fimath(...'PropertyName',PropertyValue...) allows you to
set the attributes of a fimath object using property name/property
value pairs.

The properties of the fimath object are listed below. These properties
are described in detail in “fimath Object Properties” on page 9-5 in the
Properties Reference.

• CastBeforeSum – Whether both operands are cast to the sum data
type before addition

• MaxProductWordLength – Maximum allowable word length for the
product data type

• MaxSumWordLength – Maximum allowable word length for the sum
data type

• OverflowMode – Overflow-handling mode

• ProductFractionLength – Fraction length, in bits, of the product
data type

• ProductMode – Defines how the product data type is determined

• ProductWordLength – Word length, in bits, of the product data type

• RoundMode – Rounding mode

• SumFractionLength – Fraction length, in bits, of the sum data type

• SumMode – Defines how the sum data type is determined

• SumWordLength – Word length, in bits, of the sum data type

11-72

fimath

Examples Example 1

Type

F = fimath

to create a default fimath object.

F = fimath

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Example 2

You can set properties of fimath objects at the time of object creation
by including properties after the arguments of the fimath constructor
function. For example, to set the overflow mode to saturate and the
rounding mode to convergent,

F = fimath('OverflowMode','saturate','RoundMode','convergent')

F =

RoundMode: convergent
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

11-73

fimath

CastBeforeSum: true

See Also fi, fipref, numerictype, quantizer, “fimath Object Properties” on
page 9-5

11-74

fipref

Purpose Construct a fipref object

Syntax P = fipref
P = fipref(...'PropertyName',PropertyValue...)

Description You can use the fipref constructor function in the following ways:

• P = fipref creates a default fipref object.

• P = fipref(...'PropertyName',PropertyValue...) allows you
to set the attributes of a object using property name/property value
pairs.

The properties of the fipref object are listed below. These properties
are described in detail in “fipref Object Properties” on page 9-10.

• FimathDisplay – Display options for the fimath attributes of a fi
object

• NumericTypeDisplay – Display options for the numeric type
attributes of a fi object

• NumberDisplay – Display options for the value of a fi object

• LoggingMode – Logging options for operations performed on fi
objects

Your fipref settings persist throughout your MATLAB session. Use
reset(fipref) to return to the default settings during your session.
Use savefipref to save your display preferences for subsequent
MATLAB sessions.

Examples Example 1

Type

P = fipref

to create a default fipref object.

11-75

fipref

P =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

Example 2

You can set properties of fipref objects at the time of object
creation by including properties after the arguments of the fipref
constructor function. For example, to set NumberDisplay to bin and
AttributesDisplay to short,

P = fipref('NumberDisplay', 'bin', 'NumericType', 'short')

P =

NumberDisplay: 'bin'
NumericTypeDisplay: 'short'

FimathDisplay: 'full'
LoggingMode: 'Off'

See Also fi, fimath, numerictype, quantizer, savefipref, “fipref Object
Properties” on page 9-10

11-76

fplot

Purpose Plot a function between specified limits

Description Refer to the MATLAB fplot reference page for more information.

11-77

fractionlength

Purpose Return the fraction length of a quantizer object

Syntax fractionlength(q)

Description fractionlength(q) returns the fraction length of quantizer object q.

Algorithm For floating-point quantizer objects, f = w - e - 1, where w is the word
length and e is the exponent length.

For fixed-point quantizer objects, f is part of the format [w f].

See Also fi, numerictype, quantizer, wordlength

11-78

ge

Purpose Determine whether the real-world value of one fi object is greater than
or equal to another

Syntax c = ge(a,b)
a >= b

Description c = ge(a,b) is called for the syntax ’a >= b’ when a or b is a fi object.
a and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a >= b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, gt, le, lt, ne

11-79

get

Purpose Return the property values of a quantizer object

Syntax get(q,pn,pv)
value = get(q, 'propertyname')
structure = get(q)

Description get(q,pn,pv) displays the property names and property values
associated with quantizer object q.

pn is the name of a property of the object obj, and pv is the value
associated with pn.

value = get(q, 'propertyname') returns the property value
associated with the property named in the string ’propertyname’ for
the quantizer object q. If you replace the string ’propertyname’ by a
cell array of a vector of strings containing property names, get returns
a cell array of a vector of corresponding values.

structure = get(q) returns a structure containing the properties
and states of quantizer object q.

See Also quantizer, set

11-80

gplot

Purpose Plot set of nodes using an adjacency matrix

Description Refer to the MATLAB gplot reference page for more information.

11-81

gt

Purpose Determine whether the real-world value of one fi object is greater than
another

Syntax c = gt(a,b)
a > b

Description c = gt(a,b) is called for the syntax ’a > b’ when a or b is a fi object. a
and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a > b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, ge, le, lt, ne

11-82

hankel

Purpose Return a Hankel matrix

Description Refer to the MATLAB hankel reference page for more information.

11-83

hex

Purpose Return the hexadecimal representation of the stored integer of a fi
object as a string

Syntax hexadecimal(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

hexadecimal(a) returns the stored integer of fi object a in hexadecimal
format as a string.

Examples The following code

a = fi([-1 1],1,8,7);
hex(a)

returns

80 7f

See Also bin, dec, int, oct

11-84

hex2num

Purpose Convert a hexadecimal string to a number using a quantizer object

Syntax x = hex2num(q,h)
[x1,x2,...] = hex2num(q,h1,h2,...)

Description x = hex2num(q,h) converts hexadecimal string h to numeric matrix x.
The attributes of the numbers in x are specified by quantizer object
q. When h is a cell array containing hexadecimal strings, hex2num
returns x as a cell array of the same dimension containing numbers.
For fixed-point hexadecimal strings, hex2num uses two’s complement
representation. For floating-point strings, the representation is IEEE
Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the
number, the fixed-point conversion zero-fills on the left. Floating-point
conversion zero-fills on the right.

[x1,x2,...] = hex2num(q,h1,h2,...) converts hexadecimal strings
h1, h2,... to numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction
that num2hex returns the hexadecimal strings in a column.

Examples To create all the 4-bit fixed-point two’s complement numbers in
fractional form, use the following code.

q = quantizer([4 3]);
h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)

x =

0.8750 0.3750 -0.1250 -0.6250
0.7500 0.2500 -0.2500 -0.7500
0.6250 0.1250 -0.3750 -0.8750
0.5000 0 -0.5000 -1.0000

See Also bin2num, num2bin, num2hex, num2int

11-85

hist

Purpose Create histogram plot

Description Refer to the MATLAB hist reference page for more information.

11-86

histc

Purpose Return histogram count

Description Refer to the MATLAB histc reference page for more information.

11-87

horzcat

Purpose Horizontally concatenate two or more fi objects

Syntax c = horzcat(a,b,...)
[a, b, ...]

Description c = horzcat(a,b,...) is called for the syntax [a, b, ...] when
any of a, b, ... , is a fi object.

[a b, ...] or [a,b, ...] is the horizontal concatenation of matrices
a and b. a and b must have the same number of rows. Any number of
matrices can be concatenated within one pair of brackets. N-D arrays
are horizontally concatenated along the second dimension. The first and
remaining dimensions must match.

Horizontal and vertical concatenation can be combined together as in
[1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of
rows of b, and if the number of columns of a plus the number of columns
of b equals the number of columns of c.

The matrices in a concatenation expression can themselves be formed
via a concatenation as in [a b;[c d]].

Note The fimath and numerictype objects of a concatenated matrix of
fi objects c are taken from the leftmost fi object in the list (a,b,...).

See Also vertcat

11-88

imag

Purpose Return the imaginary part

Description Refer to the MATLAB imag reference page for more information.

11-89

innerprodintbits

Purpose Return the number of integer bits needed for a fixed-point inner product

Syntax innerprodintbits(a,b)

Description innerprodintbits(a,b) computes the minimum number of integer bits
necessary in the inner product of a'*b to guarantee that no overflows
occur and to preserve best precision.

• a and b are fi vectors.

• The values of a are known.

• Only the numeric type of b is relevant. The values of b are ignored.

Examples The primary use of this function is to determine the number of integer
bits necessary in the output Y of an FIR filter that computes the inner
product between constant coefficient row vector B and state column
vector Z. For example,

for k=1:length(X);
Z = [X(k);Z(1:end-1)];
Y(k) = B * Z;

end

Algorithm In general, an inner product grows log2(n) bits for vectors of length
n. However, in the case of this function the vector a is known and its
values do not change. This knowledge is used to compute the smallest
number of integer bits that are necessary in the output to guarantee
that no overflow will occur.

The largest gain occurs when the vector b has the same sign as the
constant vector a. Therefore, the largest gain due to the vector a is
a*sign(a'), which is equal to sum(abs(a)).

The overall number of integer bits necessary to guarantee that no
overflow occurs in the inner product is computed by:

log2(sum(abs(a)) + number of integer bits in b + 1 sign bit

11-90

inspect

Purpose Display Property Inspector

Description Refer to the MATLAB inspect reference page for more information.

11-91

int

Purpose Return the smallest built-in integer in which the stored integer value
of a fi object will fit

Syntax int(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

int(a) returns the smallest built-in integer of the data type in which
the stored integer value of fi object a will fit.

The following table gives the return type of the int function.

Word Length
Return Type
for Signed fi

Return Type
for Unsigned
fi

word length <= 8 bits int8 uint8

8 bits < word length <= 16 bits int16 uint16

16 bits < word length <= 32 bits int32 uint32

32 < word length double double

Note When the word length is greater than 52 bits, the return value
can have quantization error. For bit-true integer representation of very
large word lengths, use bin, oct, dec, hex, or sdec.

11-92

int

See Also int8, int16, int32, uint8, uint16, uint32

11-93

int8

Purpose Return the stored integer value of a fi object as a built-in int8

Syntax int8(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

int8(a) returns the stored integer value of fi object a as a built-in
int8. If the stored integer word length is too big for an int8, or if the
stored integer is unsigned, the returned value saturates to an int8.

See Also int, int16, int32, uint8, uint16, uint32

11-94

int16

Purpose Return the stored integer value of a fi object as a built-in int16

Syntax int16(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

int16(a) returns the stored integer value of fi object a as a built-in
int16. If the stored integer word length is too big for an int16, or if the
stored integer is unsigned, the returned value saturates to an int16.

See Also int, int8, int32, uint8, uint16, uint32

11-95

int32

Purpose Return the stored integer value of a fi object as a built-in int32

Syntax int32(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

int32(a) returns the stored integer value of fi object a as a built-in
int32. If the stored integer word length is too big for an int32, or if the
stored integer is unsigned, the returned value saturates to an int32.

See Also int, int8, int16, uint8, uint16, uint32

11-96

intmax

Purpose Return the largest positive stored integer value representable by the
numerictype of a fi object

Syntax x = intmax(a)

Description x = intmax(a) returns the largest positive stored integer value
representable by the numerictype of a.

See Also intmin, lsb, stripscaling

11-97

intmin

Purpose Return smallest stored integer value representable by numerictype
of fi object

Syntax x = intmin(a)

Description x = intmin(a) returns the smallest stored integer value representable
by the numerictype of a.

Examples a = fi(pi, true, 16, 12);
x = intmin(a)

x =

-32768

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 0

See Also intmax, lsb, stripscaling

11-98

ipermute

Purpose Inverse permute the dimensions of a multidimensional array

Description Refer to the MATLAB ipermute reference page for more information.

11-99

iscolumn

Purpose Determine whether a fi object is a column vector

Syntax iscolumn(a)

Description iscolumn(a) returns 1 if the fi object a is a column vector, and 0
otherwise.

See Also isrow

11-100

isempty

Purpose Determine if array is empty

Description Refer to the MATLAB isempty reference page for more information.

11-101

isequal

Purpose Determine whether the real-world values of two fi objects are equal,
or determine whether the properties of two fimath, numerictype, or
quantizer objects are equal

Syntax isequal(a,b,...)
isequal(F,G,...)
isequal(T,U,...)
isequal(q,r,...)

Description isequal(a,b,...) returns 1 if all the fi object inputs have the same
real-world value. Otherwise, the function returns 0.

isequal(F,G,...) returns 1 if all the fimath object inputs have the
same properties. Otherwise, the function returns 0.

isequal(T,U,...) returns 1 if all the numerictype object inputs have
the same properties. Otherwise, the function returns 0.

isequal(q,r,...) returns 1 if all the quantizer object inputs have
the same properties. Otherwise, the function returns 0.

See Also eq, ispropequal

11-102

isfi

Purpose Determine whether a variable is a fi object

Syntax isfi(a)

Description isfi(a) returns 1 if a is a fi object, and 0 otherwise.

See Also fi, isfimath, isnumerictype

11-103

isfimath

Purpose Determine whether a variable is a fimath object

Syntax isfimath(F)

Description isfimath(F) returns 1 if F is a fimath object, and 0 otherwise.

See Also fimath, isfi, isnumerictype

11-104

isfinite

Purpose Determine if array elements are finite

Description Refer to the MATLAB isfinite reference page for more information.

11-105

isinf

Purpose Determine if array elements are infinite

Description Refer to the MATLAB isinf reference page for more information.

11-106

isnan

Purpose Determine if array elements are NaN

Description Refer to the MATLAB isnan reference page for more information.

11-107

isnumeric

Purpose Determine if input is numeric array

Description Refer to the MATLAB isnumeric reference page for more information.

11-108

isnumerictype

Purpose Determine whether a variable is a numerictype object

Syntax isnumerictype(T)

Description isnumerictype(T) returns 1 if a is a numerictype object, and 0
otherwise.

See Also isfi, isfimath, numerictype

11-109

isobject

Purpose Determine if input is MATLAB OOPS object

Description Refer to the MATLAB isobject reference page for more information.

11-110

ispropequal

Purpose Determine whether the properties of two fi objects are equal

Syntax ispropequal(a,b,...)

Description ispropequal(a,b,...) returns 1 if all the inputs are fi objects and all
the inputs have the same properties. Otherwise, the function returns 0.

To compare the real-world values of two fi objects a and b, use a ==
b or isequal(a,b).

See Also fi, isequal

11-111

isreal

Purpose Determine if array elements are real

Description Refer to the MATLAB isreal reference page for more information.

11-112

isrow

Purpose Determine whether a fi object is a row vector

Syntax isrow(a)

Description isrow(a) returns 1 if the fi object a is a row vector, and 0 otherwise.

See Also iscolumn

11-113

isscalar

Purpose Determine if input is scalar

Description Refer to the MATLAB isscalar reference page for more information.

11-114

issigned

Purpose Determine whether a fi object is signed

Syntax issigned(a)

Description issigned(a) returns 1 if the fi object a is signed, and 0 if it is unsigned.

11-115

isvector

Purpose Determine if input is vector

Description Refer to the MATLAB isvector reference page for more information.

11-116

le

Purpose Determine whether the real-world value of a fi object is less than or
equal to another

Syntax c = le(a,b)
a <= b

Description c = le(a,b) is called for the syntax 'a <= b' when a or b is a fi
object. a and b must have the same dimensions unless one is a scalar. A
scalar can be compared with another object of any size.

a <= b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, ge, gt, lt, ne

11-117

length

Purpose Return the length of a vector

Description Refer to the MATLAB length reference page for more information.

11-118

line

Purpose Create line object

Description Refer to the MATLAB line reference page for more information.

11-119

logical

Purpose Convert numeric values to logical

Description Refer to the MATLAB logical reference page for more information.

11-120

loglog

Purpose Create log-log scale plot

Description Refer to the MATLAB loglog reference page for more information.

11-121

lowerbound

Purpose Return lower bound of range of fi object

Syntax lowerbound(a)

Description lowerbound(a) returns the lower bound of the range of fi object a. If L
= lowerbound(a) and U = upperbound(a), then [L,U] = range(a).

See Also range, upperbound

11-122

lsb

Purpose Return the scaling of the least significant bit of a fi object

Syntax lsb(a)

Description lsb(a) returns the scaling of the least significant bit of fi object a. The
result is equivalent to the result given by the eps function.

See Also eps

11-123

lt

Purpose Determine whether the real-world value of a fi object is less than
another

Syntax c = lt(a,b)
a < b

Description c = lt(a,b) is called for the syntax 'a < b' when a or b is a fi object.
a and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a < b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, ge, gt, le, ne

11-124

max

Purpose Return largest element in array of fi objects

Syntax max(a)
max(a,b)
[y,v] = max(a)
[y,v] = max(a,[],dim)

Description • For vectors, max(a) is the largest element in a.

• For matrices, max(a) is a row vector containing the maximum
element from each column.

• For N-D arrays, max(a) operates along the first nonsingleton
dimension.

max(a,b) returns an array the same size as a and b with the largest
elements taken from a or b. Either one can be a scalar.

[y,v] = max(a) returns the indices of the maximum values in vector v.
If the values along the first nonsingleton dimension contain more than
one maximal element, the index of the first one is returned.

[y,v] = max(a,[],dim) operates along the dimension dim.

When complex, the magnitude max(abs(a)) is used, and the angle
angle(a) is ignored. NaNs are ignored when computing the maximum.

See Also min

11-125

maxlog

Purpose Return largest real-world value of fi object or maximum value of
quantizer object before quantization

Syntax maxlog(a)
maxlog(q)

Description maxlog(a) returns the largest real-world value of fi object a since
logging was turned on or since the last time the log was reset for the
object.

Turn on logging by setting the fipref property LoggingMode to on.
Reset logging for a fi object using the resetlog function.

maxlog(q) is the maximum value before quantization during a call to
quantize(q,...) for quantizer object q. This value is the maximum
value encountered over successive calls to quantize and is reset with
resetlog(q). maxlog(q) is equivalent to get(q,'maxlog') and
q.maxlog.

Examples P = fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
maxlog(x)

ans =

3

See Also fipref, minlog, noperations, noverflows, nunderflows, resetlog

11-126

mesh

Purpose Create mesh plot

Description Refer to the MATLAB mesh reference page for more information.

11-127

meshc

Purpose Create mesh plot with contour plot

Description Refer to the MATLAB meshc reference page for more information.

11-128

meshz

Purpose Create mesh plot with curtain plot

Description Refer to the MATLAB meshz reference page for more information.

11-129

min

Purpose Return smallest element in array of fi objects

Syntax min(a)
min(a,b)
[y,v] = min(a)
[y,v] = min(a,[],dim)

Description • For vectors, min(a) is the smallest element in a.

• For matrices, min(a) is a row vector containing the minimum
element from each column.

• For N-D arrays, min(a) operates along the first nonsingleton
dimension.

min(a,b) returns an array the same size as a and b with the smallest
elements taken from a or b. Either one can be a scalar.

[y,v] = min(a) returns the indices of the minimum values in vector v.
If the values along the first nonsingleton dimension contain more than
one minimal element, the index of the first one is returned.

[y,v] = min(a,[],dim) operates along the dimension dim.

When complex, the magnitude min(abs(a)) is used, and the angle
angle(a) is ignored. NaNs are ignored when computing the minimum.

See Also max

11-130

minlog

Purpose Return smallest real-world value of fi object or minimum value of
quantizer object before quantization

Syntax minlog(a)
minlog(q)

Description minlog(a) returns the smallest real-world value of fi object a since
logging was turned on or since the last time the log was reset for the
object.

Turn on logging by setting the fipref property LoggingMode to on.
Reset logging for a fi object using the resetlog function.

minlog(q) is the minimum value before quantization during a call to
quantize(q,...) for quantizer object q. This value is the minimum
value encountered over successive calls to quantize and is reset with
resetlog(q). minlog(q) is equivalent to get(q,'minlog') and
q.minlog.

Examples P = fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
minlog(x)

ans =

-1.5

See Also fipref, maxlog, noperations, noverflows, nunderflows, resetlog

11-131

minus

Purpose Return the matrix difference between fi objects

Syntax minus(a,b)

Description minus(a,b) is called for the syntax 'a - b' when a or b is an object.

a - b subtracts matrix b from matrix a. a and b must have the same
dimensions unless one is a scalar (a 1-by-1 matrix). A scalar can be
subtracted from anything.

minus does not support fi objects of data type Boolean.

See Also mtimes, plus, times, uminus

11-132

mpy

Purpose Multiply two objects using a fimath object

Syntax c = F.mpy(a,b)

Description c = F.mpy(a,b) performs elementwise multiplication on a and b using
fimath object F. This is helpful in cases when you want to override the
fimath objects of a and b, or if the fimath objects of a and b are different.

a and b must have the same dimensions unless one is a scalar. If either
a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in
numeric type, then the built-in object is cast to the word length of the
fi object, preserving best-precision fraction length.

Examples In this example, c is the 40-bit product of a and b with fraction length 30.

a = fi(pi);
b = fi(exp(1));
F = fimath('ProductMode','SpecifyPrecision',...

'ProductWordLength',40,'ProductFractionLength',30);
c = F.mpy(a, b)

c =

8.5397

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 40
FractionLength: 30

RoundMode: nearest
OverflowMode: saturate
ProductMode: SpecifyPrecision

ProductWordLength: 40
ProductFractionLength: 30

11-133

mpy

SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

Algorithm c = F.mpy(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a .* b;

except that the fimath properties of a and b are not modified when
you use the functional form.

See Also add, divide, fi, fimath, numerictype, sub, sum

11-134

mtimes

Purpose Return the matrix product of fi objects

Syntax mtimes(a,b)

Description mtimes(a,b) is called for the syntax 'a * b' when a or b is an object.

a * b is the matrix product of a and b. Any scalar (a 1-by-1 matrix) can
multiply anything. Otherwise, the number of columns of a must equal
the number of rows of b.

mtimes does not support fi objects of data type Boolean.

See Also plus, minus, times, uminus

11-135

ndims

Purpose Return number of array dimensions

Description Refer to the MATLAB ndims reference page for more information.

11-136

ne

Purpose Determine whether the real-world values of two fi objects are not equal

Syntax c = ne(a,b)
a ~= b

Description c = ne(a,b) is called for the syntax 'a ~= b' when a or b is a fi
object. a and b must have the same dimensions unless one is a scalar. A
scalar can be compared with another object of any size.

a ~= b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, ge, gt, le, lt

11-137

noperations

Purpose Return number of operations

Syntax noperations(a)
noperations(q)

Description noperations(a) returns the number of mathematical or assignment
operations performed on fi object a since logging was turned on or since
the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on.
Reset logging for a fi object using the resetlog function.

noperations(q) is the number of quantization operations during a call
to quantize(q,...) for quantizer object q. This value accumulates
over successive calls to quantize. You reset the value of noperations
to zero by issuing the command resetlog(q).

Each time any data element is quantized, noperations is incremented
by one. The real and complex parts are counted separately. For example,
(complex * complex) counts four quantization operations for products
and two for sum, because(a+bi)*(c+di) = (a*c - b*d) + (a*d +
b*c). In contrast, (real*real) counts one quantization operation.

In addition, the real and complex parts of the inputs are quantized
individually. As a result, for a complex input of length 204 elements,
noperations counts 408 quantizations: 204 for the real part of the
input and 204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all
expanded from real values to complex values, with a corresponding
increase in the number of quantization operations recorded by
noperations. In concrete terms, (real*real) requires fewer
quantizations than (real*complex) and (complex*complex).
Changing all the values to complex because one is complex, such as
the coefficient, makes the (real*real) into (real*complex), raising
noperations count.

See Also fipref, maxlog, minlog, noverflows, nunderflows, resetlog

11-138

not

Purpose Find logical NOT of array or scalar input

Description Refer to the MATLAB not reference page for more information.

11-139

noverflows

Purpose Return number of overflows

Syntax noverflows(a)
noverflows(q)

Description noverflows(a) returns the number of overflows of fi object a since
logging was turned on or since the last time the log was reset for the
object.

Turn on logging by setting the fipref property LoggingMode to on.
Reset logging for a fi object using the resetlog function.

noverflows(q) returns the accumulated number of overflows resulting
from quantization operations performed by a quantizer object q.

See Also maxlog, minlog, noperations, nunderflows, resetlog

11-140

num2bin

Purpose Convert a number to a binary string using a quantizer object

Syntax y = num2bin(q,x)

Description y = num2bin(q,x) converts numeric array x into binary strings
returned in y. When x is a cell array, each numeric element of x is
converted to binary. If x is a structure, each numeric field of x is
converted to binary.

num2bin and bin2num are inverses of one another, differing in that
num2bin returns the binary strings in a column.

Examples x = magic(3)/9;
q = quantizer([4,3]);
y = num2bin(q,x)
Warning: 1 overflow.
y =

0111
0010
0011
0000
0100
0111
0101
0110
0001

See Also bin2num, hex2num, num2hex, num2int

11-141

num2hex

Purpose Convert a number to its hexadecimal equivalent using a quantizer
object

Syntax y = num2hex(q,x)

Description y = num2hex(q,x) converts numeric array x into hexadecimal strings
returned in y. When x is a cell array, each numeric element of x is
converted to hexadecimal. If x is a structure, each numeric field of x is
converted to hexadecimal.

For fixed-point quantizer objects, the representation is two’s
complement. For floating-point quantizer objects, the representation is
IEEE Standard 754 style.

For example, for q = quantizer('double')

num2hex(q,nan)

ans =

fff8000000000000

The leading fraction bit is 1, all other fraction bits are 0. Sign bit is
1, exponent bits are all 1.

num2hex(q,inf)

ans =

7ff0000000000000

Sign bit is 0, exponent bits are all 1, all fraction bits are 0.

num2hex(q,-inf)

ans =

fff0000000000000

11-142

num2hex

Sign bit is 1, exponent bits are all 1, all fraction bits are 0.

num2hex and hex2num are inverses of each other, except that num2hex
returns the hexadecimal strings in a column.

Examples This is a floating-point example using a quantizer object q that has
6-bit word length and 3-bit exponent length.

x = magic(3);
q = quantizer('float',[6 3]);
y = num2hex(q,x)

y =

18
12
14
0c
15
18
16
17
10

See Also bin2num, hex2num, num2bin, num2int

11-143

num2int

Purpose Convert a number to a signed integer

Syntax y = num2int(q,x)
[y1,y,...] = num2int(q,x1,x,...)

Description y = num2int(q,x) uses q.format to convert numeric x to an integer.

[y1,y,...] = num2int(q,x1,x,...) uses q.format to convert
numeric values x1, x2,... to integers y1,y2,...

Examples All the two’s complement 4-bit numbers in fractional form are given by

x = [0.875 0.375 -0.125 -0.625
0.750 0.250 -0.250 -0.750
0.625 0.125 -0.375 -0.875
0.500 0.000 -0.500 -1.000];

q=quantizer([4 3]);

y = num2int(q,x)
y =

7 3 -1 -5
6 2 -2 -6
5 1 -3 -7
4 0 -4 -8

Algorithm When q is a fixed-point quantizer object, f is equal to
fractionlength(q), and x is numeric

When q is a floating-point quantizer object, y = x. num2int is
meaningful only for fixed-point quantizer objects.

See Also bin2num, hex2num, num2bin, num2hex

11-144

numberofelements

Purpose Return number of data elements in fi array

Syntax numberofelements(a)

Description numberofelements(a) returns the number of data elements in a fi
array. numberofelements(a) == prod(size(a)).

Note that fi is a MATLAB object, and therefore numel(a) returns 1
when a is a fi object. Refer to the information about classes in the
MATLAB numel reference page.

See Also max, min, numel

11-145

numerictype

Purpose Construct a numerictype object

Syntax T = numerictype
T = numerictype(s)
T = numerictype(s,w)
T = numerictype(s,w,f)
T = numerictype(s,w,slope,bias)
T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)
T = numerictype(property1,value1, ...)
T = numerictype(T1, property1, value1, ...)

Description You can use the numerictype constructor function in the following ways:

• T = numerictype creates a default numerictype object.

• T = numerictype(s) creates a numerictype object with
Fixed-point: binary point scaling, signedness s, 16-bit word
length and 15-bit fraction length.

• T = numerictype(s,w) creates a numerictype object with
Fixed-point: binary point scaling, signedness s, word length w
and 15-bit fraction length.

• T = numerictype(s,w,f) creates a numerictype object with
Fixed-point: binary point scaling, signedness s, word length
w and fraction length f.

• T = numerictype(s,w,slope,bias) creates a numerictype object
with Fixed-point: slope and bias scaling, signedness s, word
length w, slope, and bias.

• T =
numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)
creates a numerictype object with Fixed-point: slope and bias
scaling, signedness s, word length w, slopeadjustmentfactor,
fixedexponent, and bias.

• T = numerictype(property1,value1, ...) allows you to set
properties for a numerictype object using property name/property
value pairs.

11-146

numerictype

• T = numerictype(T1, property1, value1, ...) allows you to
make a copy of an existing numerictype object, while modifying any
or all of the property values.

The properties of the numerictype object are listed below. These
properties are described in detail in “numerictype Object Properties”
on page 9-12.

• Bias – Bias

• DataType – Data type category

• DataTypeMode – Data type and scaling mode

• FixedExponent – Fixed-point exponent

• SlopeAdjustmentFactor– Slope adjustment

• FractionLength – Fraction length of the stored integer value, in bits

• Scaling – Fixed-point scaling mode

• Signed – Signed or unsigned

• Slope – Slope

• WordLength – Word length of the stored integer value, in bits

Examples Example 1

Type

T = numerictype

to create a default numerictype object.

T =

DataType: Fixed
Scaling: BinaryPoint
Signed: true

11-147

numerictype

WordLength: 16
FractionLength: 15

Example 2

The following creates a signed numerictype object with a 32-bit word
length and 30-bit fraction length.

T = numerictype(1, 32, 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

Example 3

If you omit the argument f, it is automatically set to the best precision
possible.

T = numerictype(1, 32)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 15

Example 4

T = numerictype(1)

T =

11-148

numerictype

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

Example 5

T = numerictype('Signed', true, 'DataTypeMode', ...
'Fixed-point: slope and bias', 'WordLength', 32, 'Slope', ...
2^-2, 'Bias', 4)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 32
Slope: 0.25
Bias: 4

See Also fi, fimath, fipref, quantizer, “numerictype Object Properties” on
page 9-12

11-149

nunderflows

Purpose Return number of underflows

Syntax nunderflows(a)
nunderflows(q)

Description nunderflows(a) returns the number of underflows of fi object a since
logging was turned on or since the last time the log was reset for the
object.

Turn on logging by setting the fipref property LoggingMode to on.
Reset logging for a fi object using the resetlog function.

nunderflows(q) returns the accumulated number of underflows
resulting from quantization operations performed by a quantizer
object q.

See Also maxlog, minlog, noperations, noverflows, resetlog

11-150

oct

Purpose Return the octal representation of the stored integer of a fi object as
a string

Syntax oct(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

oct(a) returns the stored integer of fi object a in octal format as a
string.

Examples The following code

a = fi([-1 1],1,8,7);
oct(a)

returns

200 177

See Also bin, dec, hex, int

11-151

or

Purpose Find logical OR of array or scalar inputs

Description Refer to the MATLAB or reference page for more information.

11-152

patch

Purpose Create patch graphics object

Description Refer to the MATLAB patch reference page for more information.

11-153

pcolor

Purpose Create pseudocolor plot

Description Refer to the MATLAB pcolor reference page for more information.

11-154

permute

Purpose Rearrange the dimensions of a multidimensional array

Description Refer to the MATLAB permute reference page for more information.

11-155

plot

Purpose Create linear 2–D plot

Description Refer to the MATLAB plot reference page for more information.

11-156

plot3

Purpose Create 3–D line plot

Description Refer to the MATLAB plot3 reference page for more information.

11-157

plotmatrix

Purpose Draw scatter plots

Description Refer to the MATLAB plotmatrix reference page for more information.

11-158

plotyy

Purpose Create graph with y-axes on both right and left sides

Description Refer to the MATLAB plotyy reference page for more information.

11-159

plus

Purpose Return the matrix sum of fi objects

Syntax plus(a,b)

Description plus(a,b) is called for the syntax 'a + b' when a or b is an object.

a + b adds matrices a and b. a and b must have the same dimensions
unless one is a scalar (a 1-by-1 matrix). A scalar can be added to
anything.

plus does not support fi objects of data type Boolean.

See Also minus, mtimes, times, uminus

11-160

polar

Purpose Plot polar coordinates

Description Refer to the MATLAB polar reference page for more information.

11-161

pow2

Purpose Multiply by a power of 2

Syntax b = pow2(a, K)

Description b = pow2(a, K) returns

where K is an integer and a and b are fi objects. If K is a non-integer,
it will be rounded to floor before the calculation is performed. The
scaling of a must be equivalent to binary point-only scaling; in other
words, it must have a fractional slope of 1 and a bias of 0.

The syntax b = pow2(a) is not supported when a is a fi object.

a can be real or complex. If a is complex, pow2 operates on both the real
and complex portions of a.

pow2 does not support fi objects of data type Boolean.

Examples The following example shows the use of pow2 with a complex fi object:

format long g
P = fipref('NumericTypeDisplay', 'short', 'FimathDisplay',...
'none');
a = fi(57 - 2i, 1, 16, 8)

a =

57 - 2i

s16,8
pow2(a, 2)

ans =

127.99609375 - 8i

11-162

pow2

s16,8

See Also bitshift

11-163

quantize

Purpose Apply a quantizer object to data

Syntax y = quantize(q, x)
[y1,y2,...]quantize(q,x1,x2,...)

Description y = quantize(q, x) uses the quantizer object q to quantize x. When
x is a numeric array, each element of x is quantized. When x is a cell
array, each numeric element of the cell array is quantized. When x is a
structure, each numeric field of x is quantized. Nonnumeric elements or
fields of x are left unchanged and quantize does not issue warnings for
nonnumeric values.

[y1,y2,...]quantize(q,x1,x2,...) is equivalent to

y1 = quantize(q,x1), y2 = quantize(q,x2),...

The quantizer object states

• max – Maximum value before quantizing

• min – Minimum value before quantizing

• noverflows – Number of overflows

• nunderflows – Number of underflows

• noperations – Number of quantization operations

are updated during the call to quantize, and running totals are kept
until a call to resetlog is made.

Examples The following examples demonstrate using quantize to quantize data.

Example 1 - Custom Precision Floating-Point

The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000);
q=quantizer([6 3],'float');
range(q)

11-164

quantize

ans =

-14 14
y=quantize(q,u);
plot(u,y);title(tostring(q))
Warning: 68 overflows.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
quantizer(’float’, ’floor’, [6 3])

Example 2 - Fixed-Point

The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000);
q=quantizer([6 2],'wrap');

11-165

quantize

range(q)

ans =

-8.0000 7.7500
y=quantize(q,u);
plot(u,y);title(tostring(q))
Warning: 468 overflows.

−15 −10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8
quantizer(’fixed’, ’floor’, ’wrap’, [6 2])

See Also quantizer, set

11-166

quantizer

Purpose Construct a quantizer object

Syntax q = quantizer
q = quantizer('PropertyName1',PropertyValue1,...)
q = quantizer(PropertyValue1,PropertyValue2,...)
q = quantizer(struct)
q = quantizer(pn,pv)

Description q = quantizer creates a quantizer object with properties set to their
default values.

q = quantizer('PropertyName1',PropertyValue1,...) uses
property name/ property value pairs.

q = quantizer(PropertyValue1,PropertyValue2,...) creates a
quantizer object with the listed property values. When two values
conflict, quantizer sets the last property value in the list. Property
values are unique; you can set the property names by specifying just the
property values in the command.

q = quantizer(struct), where struct is a structure whose field
names are property names, sets the properties named in each field
name with the values contained in the structure.

q = quantizer(pn,pv) sets the named properties specified in the cell
array of strings pn to the corresponding values in the cell array pv.

The quantizer object property values are listed below. These properties
are described in detail in “quantizer Object Properties” on page 9-16.

Property Name Property Value Description

mode 'double' Double-precision
mode. Override all
other parameters.

'float' Custom-precision
floating-point mode.

11-167

quantizer

Property Name Property Value Description

'fixed' Signed fixed-point
mode.

'single' Single-precision
mode. Override all
other parameters.

'ufixed' Unsigned
fixed-point mode.

roundmode 'ceil' Round toward
positive infinity.

'convergent' Convergent
rounding.

'fix' Round toward zero.

'floor' Round toward
negative infinity.

'nearest' Round toward
nearest.

overflowmode (fixed-point
only)

'saturate' Saturate on
overflow.

'wrap' Wrap on overflow.

format [wordlength
exponentlength]

Format for fixed or
ufixed mode.

[wordlength
exponentlength]

Format for float
mode.

The default property values for a quantizer object are

mode = 'fixed';
roundmode = 'floor';
overflowmode = 'saturate';
format = [16 15];

11-168

quantizer

Along with the preceding properties, quantizer objects have read-only
states: max, min, noverflows, nunderflows, and noperations. They
can be accessed through quantizer/get or q.maxlog, q.minlog,
q.noverflows, q.nunderflows, and q.noperations, but they cannot
be set. They are updated during the quantizer/quantize method, and
are reset by the resetlog function.

The following table lists the read-only quantizer object states:

Property Name Description

max Maximum value before quantizing

min Minimum value before quantizing

noverflows Number of overflows

nunderflows Number of underflows

noperations Number of data points quantized

Examples The following example operations are equivalent.

Setting quantizer object properties by listing property values only in
the command,

q = quantizer('fixed', 'ceil', 'saturate', [5 4])

Using a structure struct to set quantizer object properties,

struct.mode = 'fixed';
struct.roundmode = 'ceil';
struct.overflowmode = 'saturate';
struct.format = [5 4];
q = quantizer(struct);

11-169

quantizer

Using property name and property value cell arrays pn and pv to set
quantizer object properties,

pn = {'mode', 'roundmode', 'overflowmode', 'format'};
pv = {'fixed', 'ceil', 'saturate', [5 4]};
q = quantizer(pn, pv)

Using property name/property value pairs to configure a quantizer
object,

q = quantizer('mode', fixed','roundmode','ceil',...
'overflowmode', 'saturate', 'format', [5 4]);

See Also fi, fimath, fipref, numerictype, quantize, set, “quantizer Object
Properties” on page 9-16

11-170

quiver

Purpose Create quiver or velocity plot

Description Refer to the MATLAB quiver reference page for more information.

11-171

quiver3

Purpose Create 3–D quiver or velocity plot

Description Refer to the MATLAB quiver3 reference page for more information.

11-172

randquant

Purpose Generate a uniformly distributed, quantized random number using
a quantizer object

Syntax randquant(q,n)
randquant(q,m,n)
randquant(q,m,n,p,...)
randquant(q,[m,n])
randquant(q,[m,n,p,...])

Description randquant(q,n) uses quantizer object q to generate an n-by-n matrix
with random entries whose values cover the range of q when q is a
fixed-point quantizer object. When q is a floating-point quantizer
object, randquant populates the n-by-n array with values covering the
range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n) uses quantizer object q to generate an m-by-n
matrix with random entries whose values cover the range of q when q is
a fixed-point quantizer object. When q is a floating-point quantizer
object, randquant populates the m-by-n array with values covering the
range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n,p,...) uses quantizer object q to generate an
m-by-n-by-p-by ... matrix with random entries whose values cover
the range of q when q is fixed-point quantizer object. When q is a
floating-point quantizer object, randquant populates the matrix with
values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n]) uses quantizer object q to generate an m-by-n
matrix with random entries whose values cover the range of q when q is
a fixed-point quantizer object. When q is a floating-point quantizer
object, randquant populates the m-by-n array with values covering the
range

11-173

randquant

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n,p,...]) uses quantizer object q to generate p
m-by-n matrices containing random entries whose values cover the range
of q when q is a fixed-point quantizer object. When q is a floating-point
quantizer object, randquant populates the m-by-n arrays with values
covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant produces pseudorandom numbers. The number sequence
randquant generates during each call is determined by the state of the
generator. Because MATLAB resets the random number generator
state at startup, the sequence of random numbers generated by the
function remains the same unless you change the state.

randquant works like rand in most respects, including the generator
used, but it does not support the 'state' and 'seed' options available
in rand.

Examples q=quantizer([4 3]);
rand('state',0)
randquant(q,3)

ans =

0.7500 -0.1250 -0.2500
-0.6250 0.6250 -1.0000
0.1250 0.3750 0.5000

See Also quantizer, range, realmax

11-174

range

Purpose Return the numerical range of a fi object or quantizer object

Syntax range(a)
[min, max] = range(a)
r = range(q)
[min, max] = range(q)

Description range(a) returns the minimum and maximum possible values of fi
object a in two-vector format. All possible quantized real-world values of
a are in the range returned. If a is a complex number, then all possible
values of real(a) and imag(a) are in the range returned.

[min, max] = range(a) returns the minimum and maximum values of
fi object a in separate output variables.

r = range(q) returns the two-element row vector r = [a b] such that
for all real x, y = quantize(q,x) returns y in the range a ≤ y ≤ b.

[min, max] = range(q) returns the minimum and maximum values
of the range in separate output variables.

Examples q = quantizer('float',[6 3]);
r = range(q)

r =

-14 14
q = quantizer('fixed',[4 2],'floor');
[min,max] = range(q)

min =

-2

max =

1.7500

11-175

range

Algorithm If q is a floating-point quantizer object, a = -realmax(q), b = realmax(q).

If q is a signed fixed-point quantizer object (datamode = 'fixed'),

If q is an unsigned fixed-point quantizer object
(datamode = 'ufixed'),

a = 0

See realmax for more information.

See Also exponentmin, fractionlength, max, min, realmax, realmin

11-176

real

Purpose Return real part of complex number

Description Refer to the MATLAB real reference page for more information.

11-177

realmax

Purpose Return the largest positive fixed-point value or quantized number

Syntax realmax(a)
realmax(q)

Description realmax(a) is the largest real-world value that can be represented in
the data type of fi object a. Anything larger overflows.

realmax(q) is the largest quantized number that can be represented
where q is a quantizer object. Anything larger overflows.

Examples q = quantizer('float',[6 3]);
x = realmax(q)

x =

14

Algorithm If q is a floating-point quantizer object, the largest positive number,
x, is

If q is a signed fixed-point quantizer object, the largest positive
number, x, is

If q is an unsigned fixed-point quantizer object
(datamode = 'ufixed'), the largest positive number, x,
is

11-178

realmax

See Also quantizer, realmin, exponentmin, fractionlength

11-179

realmin

Purpose Return the smallest positive normalized fixed-point value or quantized
number

Syntax realmin(a)
realmin(q)

Description realmin(a) is the smallest real-world value that can be represented in
the data type of fi object a. Anything smaller underflows.

realmin(q) is the smallest positive normal quantized number where
q is a quantizer object. Anything smaller than x underflows or is an
IEEE "denormal" number.

Examples q = quantizer('float',[6 3]);
realmin(q)

ans =

0.2500

Algorithm If q is a floating-point quantizer object,

where is the minimum exponent.

If q is a signed or unsigned fixed-point quantizer object,
where f is the fraction length.

See Also exponentmin, fractionlength, realmax

11-180

repmat

Purpose Replicate and tile an array

Description Refer to the MATLAB repmat reference page for more information.

11-181

rescale

Purpose Change the scaling of a fi object

Syntax b = rescale(a, fractionlength)
b = rescale(a, slope, bias)
b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)
b = rescale(a, ..., PropertyName, PropertyValue, ...)

Description The rescale function acts similarly to the fi copy function with the
following exceptions:

• The fi copy constructor preserves the real-world value, while
rescale preserves the stored integer value.

• rescale does not allow the Signed and WordLength properties to
be changed.

Examples In the following example, fi object a is rescaled to create fi object b.
The real-world values of a and b are different, while their stored integer
values are the same:

p = fipref('FimathDisplay','none',...
'NumericTypeDisplay','short');

a = fi(10, 1, 8, 3)

a =

10

s8,3

b = rescale(a, 1)

b =

40

11-182

rescale

s8,1

stored_integer_a = a.int;
stored_integer_b = b.int;
isequal(stored_integer_a, stored_integer_b)

ans =

1

See Also fi

11-183

reset

Purpose Reset one or more objects to their initial conditions

Syntax reset(obj)

Description reset(obj) resets fi, fimath, fipref, or quantizer object obj to its
initial conditions.

See Also resetlog

11-184

resetlog

Purpose Clear log for a fi or quantizer object

Syntax resetlog(a)
resetlog(q)

Description resetlog(a) clears the log for fi object a.

resetlog(q) clears the log for quantizer object q.

Turn logging on or off by setting the fipref property LoggingMode.

See Also fipref, maxlog, minlog, noperations, noverflows, nunderflows,
reset

11-185

reshape

Purpose Reshape array

Description Refer to the MATLAB reshape reference page for more information.

11-186

rgbplot

Purpose Plot colormap

Description Refer to the MATLAB rgbplot reference page for more information.

11-187

ribbon

Purpose Create ribbon plot

Description Refer to the MATLAB ribbon reference page for more information.

11-188

rose

Purpose Create angle histogram

Description Refer to the MATLAB rose reference page for more information.

11-189

round

Purpose Round input data using a quantizer object without checking for
overflow

Syntax round(q,x)

Description round(q,x) uses the RoundMode and FractionLength settings of q to
round the numeric data x, but does not check for overflows during the
operation. Compare to quantize.

Examples Create a quantizer object and use it to quantize input data. The
quantizer object applies its properties to the input data to return
quantized output.

q = quantizer('fixed', 'convergent', 'wrap', [3 2]);
x = (-2:eps(q)/4:2)';
y = round(q,x);
plot(x,[x,y],'.-'); axis square;

Applying quantizer object q to the data results in the staircase shape
output plot shown here. Where the input data is linear, output y shows
distinct quantization levels.

11-190

round

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Input data x

Output data y

See Also quantize, quantizer

11-191

savefipref

Purpose Save fi preferences for the next MATLAB session

Syntax savefipref

Description savefipref saves the settings of the current fipref object for the next
MATLAB session.

See Also fipref

11-192

scatter

Purpose Create a scatter or bubble plot

Description Refer to the MATLAB scatter reference page for more information.

11-193

scatter3

Purpose Create a 3–D scatter or bubble plot

Description Refer to the MATLAB scatter3 reference page for more information.

11-194

sdec

Purpose Return signed decimal representation of stored integer of fi object as
string

Syntax sdec(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

sdec(a) returns the stored integer of fi object a in signed decimal
format as a string.

Examples The code

a = fi([-1 1],1,8,7);
sdec(a)

returns

-128 127

See Also bin, dec, hex, int, oct

11-195

semilogx

Purpose Create semilogarithmic plot with logarithmic x-axis

Description Refer to the MATLAB semilogx reference page for more information.

11-196

semilogy

Purpose Create semilogarithmic plot with logarithmic y-axis

Description Refer to the MATLAB semilogy reference page for more information.

11-197

set

Purpose Set or display property values for quantizer objects

Syntax set(q, PropertyValue1, PropertyValue2,...)

set(q,s)

set(q,pn,pv)

set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...)

q.PropertyName = Value

s = set(q)

Description set(q, PropertyValue1, PropertyValue2,...) sets the properties
of quantizer object q. If two property values conflict, the last value
in the list is the one that is set.

set(q,s), where s is a structure whose field names are object property
names, sets the properties named in each field name with the values
contained in the structure.

set(q,pn,pv) sets the named properties specified in the cell array of
strings pn to the corresponding values in the cell array pv.

set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...) sets multiple property values with a single
statement. Note that you can use property name/property value string
pairs, structures, and property name/property value cell array pairs in
the same call to set.

q.PropertyName = Value uses dot notation to set property
PropertyName to Value.

set(q) displays the possible values for all properties of quantizer
object q.

s = set(q) returns a structure containing the possible values for the
properties of quantizer object q.

See Also get

11-198

sign

Purpose Perform signum function on array

Syntax c = sign(a)

Description c = sign(a) returns an array c the same size as a, where each element
of c is

• 1 if the corresponding element of a is greater than zero

• 0 if the corresponding element of a is zero

• -1 if the corresponding element of a is less than zero

The elements of c are of data type int8.

sign does not support complex fi inputs.

11-199

single

Purpose Return the single-precision floating-point real-world value of a fi object

Syntax single(a)

Description Fixed-point numbers can be represented as

or, equivalently,

single(a) returns the real-world value of a fi object in single-precision
floating point.

See Also double

11-200

size

Purpose Return array dimensions

Description Refer to the MATLAB size reference page for more information.

11-201

slice

Purpose Create volumetric slice plot

Description Refer to the MATLAB slice reference page for more information.

11-202

spy

Purpose Visualize sparsity pattern

Description Refer to the MATLAB spy reference page for more information.

11-203

squeeze

Purpose Remove singleton dimensions

Description Refer to the MATLAB squeeze reference page for more information.

11-204

stairs

Purpose Create stairstep graph

Description Refer to the MATLAB stairs reference page for more information.

11-205

stem

Purpose Plot discrete sequence data

Description Refer to the MATLAB stem reference page for more information.

11-206

stem3

Purpose Plot 3–D discrete sequence data

Description Refer to the MATLAB stem3 reference page for more information.

11-207

streamribbon

Purpose Create a 3–D stream ribbon plot

Description Refer to the MATLAB streamribbon reference page for more
information.

11-208

streamslice

Purpose Draw streamlines in slice planes

Description Refer to the MATLAB streamslice reference page for more information.

11-209

streamtube

Purpose Create a 3–D stream tube plot

Description Refer to the MATLAB streamtube reference page for more information.

11-210

stripscaling

Purpose Return the stored integer of a fi object

Syntax I = stripscaling(a)

Description I = stripscaling(a) returns the stored integer of a as a fi object
with zero bias and the same word length and sign as a.

11-211

sub

Purpose Subtract two objects using a fimath object

Syntax c = F.sub(a,b)

Description c = F.sub(a,b) subtracts objects a and b using fimath object F. This is
helpful in cases when you want to override the fimath objects of a and
b, or if the fimath objects of a and b are different.

a and b must have the same dimensions unless one is a scalar. If either
a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in
numeric type, then the built-in object is cast to the word length of the
fi object, preserving best-precision fraction length.

Examples In this example, c is the 32-bit difference of a and b with fraction length
16.

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',16);
c = F.sub(a, b)

c =

0.4233

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 16

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128

11-212

sub

SumMode: SpecifyPrecision
SumWordLength: 32

SumFractionLength: 16
CastBeforeSum: true

Algorithm c = F.sub(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a - b;

except that the fimath properties of a and b are not modified when
you use the functional form.

See Also add, divide, fi, fimath, mpy, numerictype

11-213

subsasgn

Purpose Subscripted assignment

Syntax a(I) = b
a(I,J) = b
a(I,:) = b
a(:,I) = b
a(I,J,K,...) = b
a = subsasgn(a,S,b)

Description a(I) = b assigns the values of b into the elements of a specified by the
subscript vector I. b must have the same number of elements as I or
be a scalar.

a(I,J) = b assigns the values of b into the elements of the rectangular
submatrix of a specified by the subscript vectors I and J. b must have
LENGTH(I) rows and LENGTH(J) columns.

A colon used as a subscript, as in a(I,:) = b or a(:,I) = b indicates
the entire column or row.

For multidimensional arrays, a(I,J,K,...) = b
assigns b to the specified elements of a. b must be
length(I)-by-length(J)-by-length(K)-... or be shiftable to
that size by adding or removing singleton dimensions.

a = subsasgn(a,S,b) is called for the syntax a(i)=b, a{i}=b, or a.i=b
when a is an object. S is a structure array with the fields

• type – String containing '()', '{}', or '.' specifying the subscript
type

• subs – Cell array or string containing the actual subscripts

For instance, the syntax a(1:2,:)=b calls a=subsasgn(a,S,b) where S
is a 1-by-1 structure with S.type='()' and S.subs = {1:2,':'}. A
colon used as a subscript is passed as the string ':'.

See Also subsref

11-214

subsref

Purpose Subscripted reference

Description Refer to the MATLAB subsref reference page for more information.

11-215

sum

Purpose Return sum of array elements

Syntax b = sum(a)
b = sum(a, dim)

Description b = sum(a) returns the sum along different dimensions of the fi array
a.

If a is a vector, sum(a) returns the sum of the elements.

If a is a matrix, sum(a) treats the columns of a as vectors, returning a
row vector of the sums of each column.

If a is a multidimensional array, sum(a) treats the values along the first
nonsingleton dimension as vectors, returning an array of row vectors.

b = sum(a, dim) sums along the dimension dim of a.

The fimath object is used in the calculation of the sum. If SumMode is
FullPrecision, KeepLSB, or KeepMSB, then the number of integer bits
of growth for sum(a) is ceil(log2(length(a))).

sum does not support fi objects of data type Boolean.

See Also add, divide, fi, fimath, mpy, numerictype, sub

11-216

surf

Purpose Create 3–D shaded surface plot

Description Refer to the MATLAB surf reference page for more information.

11-217

surfc

Purpose Create 3–D shaded surface plot with contour plot

Description Refer to the MATLAB surfc reference page for more information.

11-218

surfl

Purpose Create a surface plot with colormap-based lighting

Description Refer to the MATLAB surfl reference page for more information.

11-219

surfnorm

Purpose Compute and display 3–D surface normals

Description Refer to the MATLAB surfnorm reference page for more information.

11-220

text

Purpose Create text object in current axes

Description Refer to the MATLAB text reference page for more information.

11-221

times

Purpose Return the result of element-by-element multiplication of fi objects

Syntax times(a,b)

Description times(a,b) is called for the syntax 'a .* b' when a or b is an object.

a.*b denotes element-by-element multiplication. a and b must have
the same dimensions unless one is a scalar. A scalar can be multiplied
into anything.

times does not support fi objects of data type Boolean.

See Also plus, minus, mtimes, uminus

11-222

toeplitz

Purpose Create Toeplitz matrix

Syntax t = toeplitz(a, b)
t = toeplitz(b)

Description t = toeplitz(a, b) returns a nonsymmetric Toeplitz matrix having a
as its first column and b as its first row. b is cast to the numerictype of a.

t = toeplitz(b) returns the symmetric or Hermitian Toeplitz matrix
formed from vector b, where b is the first row of the matrix.

The numerictype and fimath objects of the leftmost input that is a fi
object are applied to the output t.

11-223

tostring

Purpose Convert a quantizer object to a string

Syntax s = tostring(q)

Description s = tostring(q) converts quantizer object q to a string s. After
converting q to a string, the function eval(s) can use s to create a
quantizer object with the same properties as q.

See Also quantizer

11-224

transpose

Purpose Return the transpose

Description Refer to the MATLAB arithmetic operators reference page for more
information.

11-225

treeplot

Purpose Plot picture of tree

Description Refer to the MATLAB treeplot reference page for more information.

11-226

tril

Purpose Return the lower triangular part of a matrix

Description Refer to the MATLAB tril reference page for more information.

11-227

trimesh

Purpose Create triangular mesh plot

Description Refer to the MATLAB trimesh reference page for more information.

11-228

triplot

Purpose Create 2–D triangular plot

Description Refer to the MATLAB triplot reference page for more information.

11-229

trisurf

Purpose Create triangular surface plot

Description Refer to the MATLAB trisurf reference page for more information.

11-230

triu

Purpose Return the upper triangular part of a matrix

Description Refer to the MATLAB triu reference page for more information.

11-231

uint8

Purpose Return the stored integer value of a fi object as a built-in uint8

Syntax uint8(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

uint8(a) returns the stored integer value of fi object a as a built-in
uint8. If the stored integer word length is too big for a uint8, or if the
stored integer is signed, the returned value saturates to a uint8.

See Also int, int8, int16, int32, uint16, uint32

11-232

uint16

Purpose Return the stored integer value of a fi object as a built-in uint16

Syntax uint16(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

uint16(a) returns the stored integer value of fi object a as a built-in
uint16. If the stored integer word length is too big for a uint16, or if
the stored integer is signed, the returned value saturates to a uint16.

See Also int, int8, int16, int32, uint8, uint32

11-233

uint32

Purpose Return the stored integer value of a fi object as a built-in uint32

Syntax uint32(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

uint32(a) returns the stored integer value of fi object a as a built-in
uint32. If the stored integer word length is too big for a uint32, or if
the stored integer is signed, the returned value saturates to a uint32.

See Also int, int8, int16, int32, uint8, uint16

11-234

uminus

Purpose Negate the elements of a fi object array

Syntax uminus(a)

Description uminus(a) is called for the syntax '-a' when a is an object. -a negates
the elements of a.

uminus does not support fi objects of data type Boolean.

See Also plus, minus, mtimes, times

11-235

uplus

Purpose Unary plus

Description Refer to the MATLAB arithmetic operators reference page for more
information.

11-236

upperbound

Purpose Return upper bound of range of fi object

Syntax upperbound(a)

Description upperbound(a) returns the upper bound of the range of fi object a. If L
= lowerbound(a) and U = upperbound(a), then [L,U] = range(a).

See Also lowerbound, range

11-237

vertcat

Purpose Vertically concatenate two or more fi objects

Syntax c = vertcat(a,b,...)
[a; b; ...]
[a;b]

Description c = vertcat(a,b,...) is called for the syntax [a; b; ...] when any
of a, b, ... , is a fi object.

[a;b] is the vertical concatenation of matrices a and b. a and b must
have the same number of columns. Any number of matrices can be
concatenated within one pair of brackets. N-D arrays are vertically
concatenated along the first dimension. The remaining dimensions
must match.

Horizontal and vertical concatenation can be combined, as in [1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of
rows of b, and if the number of columns of a plus the number of columns
of b equals the number of columns of c.

The matrices in a concatenation expression can themselves be formed
via a concatenation, as in [a b;[c d]].

Note The fimath and numerictype objects of a concatenated matrix of
fi objects c are taken from the leftmost fi object in the list (a,b,...).

See Also horzcat

11-238

voronoi

Purpose Create Voronoi diagram

Description Refer to the MATLAB voronoi reference page for more information.

11-239

voronoin

Purpose Create n-dimensional Voronoi diagram

Description Refer to the MATLAB voronoin reference page for more information.

11-240

waterfall

Purpose Create waterfall plot

Description Refer to the MATLAB waterfall reference page for more information.

11-241

wordlength

Purpose Return the word length of a quantizer object

Syntax wordlength(q)

Description wordlength(q) returns the word length of the quantizer object q.

Examples q = quantizer([16 15]);
wordlength(q)

ans =

16

See Also fi, fractionlength, exponentlength, numerictype, quantizer

11-242

xlim

Purpose Set or query x-axis limits

Description Refer to the MATLAB xlim reference page for more information.

11-243

ylim

Purpose Set or query y-axis limits

Description Refer to the MATLAB ylim reference page for more information.

11-244

zlim

Purpose Set or query z-axis limits

Description Refer to the MATLAB zlim reference page for more information.

11-245

Glossary

Glossary

This glossary defines terms related to fixed-point data types and numbers.
These terms may appear in some or all of the documents that describe
products from The MathWorks that have fixed-point support.

arithmetic shift
Shift of the bits of a binary word for which the sign bit is recycled for
each bit shift to the right. A zero is incorporated into the least significant
bit of the word for each bit shift to the left. In the absence of overflows,
each arithmetic shift to the right is equivalent to a division by 2, and
each arithmetic shift to the left is equivalent to a multiplication by 2.

See also binary point, binary word, bit, logical shift, most significant bit

bias
Part of the numerical representation used to interpret a fixed-point
number. Along with the slope, the bias forms the scaling of the number.
Fixed-point numbers can be represented as

where the slope can be expressed as

See also fixed-point representation, fractional slope, integer, scaling,
slope, [Slope Bias]

binary number
Value represented in a system of numbers that has two as its base and
that uses 1’s and 0’s (bits) for its notation.

See also bit

binary point
Symbol in the shape of a period that separates the integer and fractional
parts of a binary number. Bits to the left of the binary point are
integer bits and/or sign bits, and bits to the right of the binary point
are fractional bits.

Glossary-1

Glossary

See also binary number, bit, fraction, integer, radix point

binary point-only scaling
Scaling of a binary number that results from shifting the binary point of
the number right or left, and which therefore can only occur by powers
of two.

See also binary number, binary point, scaling

binary word
Fixed-length sequence of bits (1’s and 0’s). In digital hardware, numbers
are stored in binary words. The way in which hardware components or
software functions interpret this sequence of 1’s and 0’s is described
by a data type.

See also bit, data type, word

bit
Smallest unit of information in computer software or hardware. A bit
can have the value 0 or 1.

ceiling (round toward)
Rounding mode that rounds to the closest representable number in the
direction of positive infinity. This is equivalent to the ceil mode in
Fixed-Point Toolbox.

See also convergent rounding, floor (round toward), nearest (round
toward), rounding, truncation, zero (round toward)

contiguous binary point
Binary point that occurs within the word length of a data type. For
example, if a data type has four bits, its contiguous binary point must
be understood to occur at one of the following five positions:

Glossary-2

Glossary

See also data type, noncontiguous binary point, word length

convergent rounding
Rounding mode that rounds to the nearest allowable quantized value.
Numbers that are exactly halfway between the two nearest allowable
quantized values are rounded up only if the least significant bit (after
rounding) would be set to 0.

See also ceiling (round toward), floor (round toward), nearest (round
toward), rounding, truncation, zero (round toward)

data type
Set of characteristics that define a group of values. A fixed-point data
type is defined by its word length, its fraction length, and whether it is
signed or unsigned. A floating-point data type is defined by its word
length and whether it is signed or unsigned.

See also fixed-point representation, floating-point representation,
fraction length, word length

data type override
Parameter in the Fixed-Point Settings interface that allows you to
set the output data type and scaling of fixed-point blocks on a system
or subsystem level.

See also data type, scaling

exponent
Part of the numerical representation used to express a floating-point or
fixed-point number.

1. Floating-point numbers are typically represented as

2. Fixed-point numbers can be represented as

where the slope can be expressed as

Glossary-3

Glossary

The exponent of a fixed-point number is equal to the negative of the
fraction length:

See also bias, fixed-point representation, floating-point representation,
fraction length, fractional slope, integer, mantissa, slope

fixed-point representation
Method for representing numerical values and data types that have
a set range and precision.

1. Fixed-point numbers can be represented as

where the slope can be expressed as

The slope and the bias together represent the scaling of the fixed-point
number.

2. Fixed-point data types can be defined by their word length, their
fraction length, and whether they are signed or unsigned.

See also bias, data type, exponent, fraction length, fractional slope,
integer, precision, range, scaling, slope, word length

floating-point representation
Method for representing numerical values and data types that can have
changing range and precision.

1. Floating-point numbers can be represented as

2. Floating-point data types are defined by their word length.

Glossary-4

Glossary

See also data type, exponent, mantissa, precision, range, word length

floor (round toward)
Rounding mode that rounds to the closest representable number in
the direction of negative infinity.

See also ceiling (round toward), convergent rounding, nearest (round
toward), rounding, truncation, zero (round toward)

fraction
Part of a fixed-point number represented by the bits to the right of the
binary point. The fraction represents numbers that are less than one.

See also binary point, bit, fixed-point representation

fraction length
Number of bits to the right of the binary point in a fixed-point
representation of a number.

See also binary point, bit, fixed-point representation, fraction

fractional slope
Part of the numerical representation used to express a fixed-point
number. Fixed-point numbers can be represented as

where the slope can be expressed as

The term slope adjustment is sometimes used as a synonym for
fractional slope.

See also bias, exponent, fixed-point representation, integer, slope

guard bits
Extra bits in either a hardware register or software simulation that are
added to the high end of a binary word to ensure that no information
is lost in case of overflow.

Glossary-5

Glossary

See also binary word, bit, overflow

integer
1. Part of a fixed-point number represented by the bits to the left of the
binary point. The integer represents numbers that are greater than
or equal to one.

2. Also called the "stored integer." The raw binary number, in which the
binary point is assumed to be at the far right of the word. The integer
is part of the numerical representation used to express a fixed-point
number. Fixed-point numbers can be represented as

or

where the slope can be expressed as

See also bias, fixed-point representation, fractional slope, integer,
real-world value, slope

integer length
Number of bits to the left of the binary point in a fixed-point
representation of a number.

See also binary point, bit, fixed-point representation, fraction length,
integer

least significant bit (LSB)
Bit in a binary word that can represent the smallest value. The LSB is
the rightmost bit in a big-endian-ordered binary word. The weight of
the LSB is related to the fraction length according to

Glossary-6

Glossary

See also big-endian, binary word, bit, most significant bit

logical shift
Shift of the bits of a binary word, for which a zero is incorporated into
the most significant bit for each bit shift to the right and into the least
significant bit for each bit shift to the left.

See also arithmetic shift, binary point, binary word, bit, most significant
bit

mantissa
Part of the numerical representation used to express a floating-point
number. Floating-point numbers are typically represented as

See also exponent, floating-point representation

most significant bit (MSB)
Bit in a binary word that can represent the largest value. The MSB is
the leftmost bit in a big-endian-ordered binary word.

See also binary word, bit, least significant bit

nearest (round toward)
Rounding mode that rounds to the closest representable number, with
the exact midpoint rounded to the closest representable number in the
direction of positive infinity. This is equivalent to the nearest mode in
Fixed-Point Toolbox.

See also ceiling (round toward), convergent rounding, floor (round
toward), rounding, truncation, zero (round toward)

noncontiguous binary point
Binary point that is understood to fall outside the word length of a
data type. For example, the binary point for the following 4-bit word is
understood to occur two bits to the right of the word length,

thereby giving the bits of the word the following potential values:

Glossary-7

Glossary

See also binary point, data type, word length

one’s complement representation
Representation of signed fixed-point numbers. Negating a binary
number in one’s complement requires a bitwise complement. That is, all
0’s are flipped to 1’s and all 1’s are flipped to 0’s. In one’s complement
notation there are two ways to represent zero. A binary word of all
0’s represents "positive" zero, while a binary word of all 1’s represents
"negative" zero.

See also binary number, binary word, sign/magnitude representation,
signed fixed-point, two’s complement representation

overflow
Situation that occurs when the magnitude of a calculation result is too
large for the range of the data type being used. In many cases you can
choose to either saturate or wrap overflows.

See also saturation, wrapping

padding
Extending the least significant bit of a binary word with one or more
zeros.

See also least significant bit

precision
1. Measure of the smallest numerical interval that a fixed-point data
type and scaling can represent, determined by the value of the number’s
least significant bit. The precision is given by the slope, or the number
of fractional bits. The term resolution is sometimes used as a synonym
for this definition.

2. Measure of the difference between a real-world numerical value and
the value of its quantized representation. This is sometimes called
quantization error or quantization noise.

See also data type, fraction, least significant bit, quantization,
quantization error, range, slope

Glossary-8

Glossary

Q format
Representation used by Texas Instruments to encode signed two’s
complement fixed-point data types. This fixed-point notation takes the
form

Qm.n

where

• Q indicates that the number is in Q format.

• m is the number of bits used to designate the two’s complement
integer part of the number.

• n is the number of bits used to designate the two’s complement
fractional part of the number, or the number of bits to the right of
the binary point.

In Q format notation, the most significant bit is assumed to be the sign
bit.

See also binary point, bit, data type, fixed-point representation, fraction,
integer, two’s complement

quantization
Representation of a value by a data type that has too few bits to
represent it exactly.

See also bit, data type, quantization error

quantization error
Error introduced when a value is represented by a data type that has
too few bits to represent it exactly, or when a value is converted from
one data type to a shorter data type. Quantization error is also called
quantization noise.

See also bit, data type, quantization

radix point
Symbol in the shape of a period that separates the integer and fractional
parts of a number in any base system. Bits to the left of the radix point

Glossary-9

Glossary

are integer and/or sign bits, and bits to the right of the radix point are
fraction bits.

See also binary point, bit, fraction, integer, sign bit

range
Span of numbers that a certain data type can represent.

See also data type, precision

real-world value
Stored integer value with fixed-point scaling applied. Fixed-point
numbers can be represented as

or

where the slope can be expressed as

See also integer

resolution
See precision

rounding
Limiting the number of bits required to express a number. One or
more least significant bits are dropped, resulting in a loss of precision.
Rounding is necessary when a value cannot be expressed exactly by the
number of bits designated to represent it.

See also bit, ceiling (round toward), convergent rounding, floor (round
toward), least significant bit, nearest (round toward), precision,
truncation, zero (round toward)

Glossary-10

Glossary

saturation
Method of handling numeric overflow that represents positive overflows
as the largest positive number in the range of the data type being used,
and negative overflows as the largest negative number in the range.

See also overflow, wrapping

scaling
1. Format used for a fixed-point number of a given word length and
signedness. The slope and bias together form the scaling of a fixed-point
number.

2. Changing the slope and/or bias of a fixed-point number without
changing the stored integer.

See also bias, fixed-point representation, integer, slope

shift
Movement of the bits of a binary word either toward the most significant
bit ("to the left") or toward the least significant bit ("to the right"). Shifts
to the right can be either logical, where the spaces emptied at the front
of the word with each shift are filled in with zeros, or arithmetic, where
the word is sign extended as it is shifted to the right.

See also arithmetic shift, logical shift, sign extension

sign bit
Bit (or bits) in a signed binary number that indicates whether the
number is positive or negative.

See also binary number, bit

sign extension
Addition of bits that have the value of the most significant bit to the
high end of a two’s complement number. Sign extension does not change
the value of the binary number.

See also binary number, guard bits, most significant bit, two’s
complement representation, word

Glossary-11

Glossary

sign/magnitude representation
Representation of signed fixed-point or floating-point numbers. In
sign/magnitude representation, one bit of a binary word is always
the dedicated sign bit, while the remaining bits of the word encode
the magnitude of the number. Negation using sign/magnitude
representation consists of flipping the sign bit from 0 (positive) to 1
(negative), or from 1 to 0.

See also binary word, bit, fixed-point representation, floating-point
representation, one’s complement representation, sign bit, signed
fixed-point, two’s complement representation

signed fixed-point
Fixed-point number or data type that can represent both positive and
negative numbers.

See also data type, fixed-point representation, unsigned fixed-point

slope
Part of the numerical representation used to express a fixed-point
number. Along with the bias, the slope forms the scaling of a fixed-point
number. Fixed-point numbers can be represented as

where the slope can be expressed as

See also bias, fixed-point representation, fractional slope, integer,
scaling, [Slope Bias]

slope adjustment
See fractional slope

[Slope Bias]
Representation used to define the scaling of a fixed-point number.

See also bias, scaling, slope

Glossary-12

Glossary

stored integer
See integer

trivial scaling
Scaling that results in the real-world value of a number being simply
equal to its stored integer value:

In [Slope Bias] representation, fixed-point numbers can be represented
as

In the trivial case, slope = 1 and bias = 0.

In terms of binary point-only scaling, the binary point is to the right of
the least significant bit for trivial scaling, meaning that the fraction
length is zero:

Scaling is always trivial for pure integers, such as int8, and also for the
true floating-point types single and double.

See also bias, binary point, binary point-only scaling, fixed-point
representation, fraction length, integer, least-significant bit, scaling,
slope, [Slope Bias]

truncation
Rounding mode that drops one or more least significant bits from a
number.

See also ceiling (round toward), convergent rounding, floor (round
toward), nearest (round toward), rounding, zero (round toward)

two’s complement representation
Common representation of signed fixed-point numbers. Negation using
signed two’s complement representation consists of a translation into
one’s complement followed by the binary addition of a one.

Glossary-13

Glossary

See also binary word, one’s complement representation, sign/magnitude
representation, signed fixed-point

unsigned fixed-point
Fixed-point number or data type that can only represent numbers
greater than or equal to zero.

See also data type, fixed-point representation, signed fixed-point

word
Fixed-length sequence of binary digits (1’s and 0’s). In digital hardware,
numbers are stored in words. The way hardware components or
software functions interpret this sequence of 1’s and 0’s is described
by a data type.

See also binary word, data type

word length
Number of bits in a binary word or data type.

See also binary word, bit, data type

wrapping
Method of handling overflow. Wrapping uses modulo arithmetic to cast
a number that falls outside of the representable range the data type
being used back into the representable range.

See also data type, overflow, range, saturation

zero (round toward)
Rounding mode that rounds to the closest representable number in the
direction of zero. This is equivalent to the fix mode in Fixed-Point
Toolbox.

See also ceiling (round toward), convergent rounding, floor (round
toward), nearest (round toward), rounding, truncation

Glossary-14

Index

IndexA
abs function 11-2
add function 11-5
all function 11-7
and function 11-8
ANSI C

compared with fi objects 2-20
any function 11-9
area function 11-10
arithmetic operations

fixed-point 2-8

B
bar function 11-11
barh function 11-12
Bias property 9-12
bin function 11-13
bin property 9-2
bin2num function 11-14
binary conversions 2-23
bitand function 11-16
bitcmp function 11-17
bitget function 11-18
bitor function 11-19
bitset function 11-20
bitshift function 11-21
bitxor function 11-22
buffer function 11-23

C
CastBeforeSum property 9-5
casts

fixed-point 2-16
clabel function 11-24
comet function 11-25
comet3 function 11-26
compass function 11-27
complex function 11-28

complex multiplication
fixed-point 2-11

coneplot function 11-29
conj function 11-30
contour function 11-31
contour3 function 11-32
contourc function 11-33
contourf function 11-34
convergent function 11-35
copyobj function 11-36
ctranspose function 11-37

D
Data property 9-2
DataType property 9-12
DataTypeMode property 9-12
dec function 11-38
demos 1-7
denormalmax function 11-39
denormalmin function 11-40
diag function 11-41
disp function 11-42
display preferences

setting 5-5
display settings 1-5
div function 11-43
double function 11-46
double property 9-2
doubles override 5-12

E
Embedded MATLAB

Fixed-Point Toolbox support 8-11
using with Model Explorer and fixed-point

models 8-16
end function 11-47
eps function 11-48
eq function 11-49

Index-1

Index

errorbar function 11-50
etreeplot function 11-51
exponentbias function 11-52
exponentlength function 11-53
exponentmax function 11-54
exponentmin function 11-55
ezcontour function 11-56
ezcontourf function 11-57
ezmesh function 11-58
ezplot function 11-59
ezplot3 function 11-60
ezpolar function 11-61
ezsurf function 11-62
ezsurfc function 11-63

F
feather function 11-64
fi function 11-65
fi objects

constructing 3-2
properties

bin 9-2
Data 9-2
double 9-2
hex 9-3
int 9-3
NumericType 9-3
oct 9-4

fimath function 11-72
fimath objects 2-13

constructing 4-2

properties
CastBeforeSum 9-5
MaxProductWordLength 9-5
MaxSumWordLength 9-5
OverflowMode 9-5
ProductFractionLength 9-6
ProductMode 9-6
ProductWordLength 9-7
RoundMode 9-7
setting in the Model Explorer 4-6
SumFractionLength 9-8
SumMode 9-8
SumWordLength 9-9

setting properties in the Model
Explorer 4-6

fimath property 9-2
FimathDisplay property 9-10
fiobjects

properties
fimath 9-2

fipref function 11-75
fipref objects

constructing 5-2
properties

FimathDisplay 9-10
LoggingMode 9-10
NumberDisplay 9-11
NumericTypeDisplay 9-11

fixed-point data
reading from workspace 8-2
writing to workspace 8-2

fixed-point data types
addition 2-10
arithmetic operations 2-8
casts 2-16
complex multiplication 2-11
modular arithmetic 2-8
multiplication 2-11
overflow handling 2-5
precision 2-5

Index-2

Index

range 2-5
rounding 2-6
saturation 2-5
scaling 2-4
subtraction 2-10
two’s complement 2-9
wrapping 2-5

fixed-point models
Embedded MATLAB support 8-11

fixed-point run-time API 8-6
fixed-point signal logging 8-6
Fixed-Point Toolbox

Embedded MATLAB support 8-11
FixedExponent property 9-13
format

rat 9-11
Format property 9-16
fplot function 11-77
fractionlength function 11-78
FractionLength property 9-14
function

line 11-119
functions

abs 11-2
add 11-5
all 11-7
and 11-8
any 11-9
area 11-10
bar 11-11
barh 11-12
bin 11-13
bin2num 11-14
bitand 11-16
bitcmp 11-17
bitget 11-18
bitor 11-19
bitset 11-20
bitshift 11-21
bitxor 11-22

buffer 11-23
clabel 11-24
comet 11-25
comet3 11-26
compass 11-27
complex 11-28
coneplot 11-29
conj 11-30
contour 11-31
contour3 11-32
contourc 11-33
contourf 11-34
convergent 11-35
copyobj 11-36
ctranspose 11-37
dec 11-38
denormalmax 11-39
denormalmin 11-40
diag 11-41
disp 11-42
div 11-43
double 11-46
end 11-47
eps 11-48
eq 11-49
errorbar 11-50
etreeplot 11-51
exponentbias 11-52
exponentlength 11-53
exponentmax 11-54
exponentmin 11-55
ezcontour 11-56
ezcontourf 11-57
ezmesh 11-58
ezplot 11-59
ezplot3 11-60
ezpolar 11-61
ezsurf 11-62
ezsurfc 11-63
feather 11-64

Index-3

Index

fi 11-65
fimath 11-72
fipref 11-75
fplot 11-77
fractionlength 11-78
ge 11-79
get 11-80
gplot 11-81
gt 11-82
hankel 11-83
hex 11-84
hex2num 11-85
hist 11-86
histc 11-87
horzcat 11-88
imag 11-89
inspect 11-91
int 11-92
int16 11-95
int32 11-96
int8 11-94
intmax 11-97
intmin 11-98
ipermute 11-99
iscolumn 11-100
isempty 11-101
isequal 11-102
isfi 11-103
isfinite 11-105
isinf 11-106
isnan 11-107
isnumeric 11-108
isobject 11-110
isreal 11-112
isrow 11-113
isscalar 11-114
issigned 11-115
isvector 11-116
le 11-117
length 11-118

logical 11-120
loglog 11-121
lowerbound 11-122
lsb 11-123
lt 11-124
max 11-125
maxlog 11-126
mesh 11-127
meshc 11-128
meshz 11-129
min 11-130
minlog 11-131
minus 11-132
mpy 11-133
mtimes 11-135
ndims 11-136
ne 11-137
noperations 11-138
not 11-139
noverflows 11-140
num2bin 11-141
num2hex 11-142
num2int 11-144
numberofelements 11-145
numerictype 11-146
nunderflows 11-150
oct 11-151
or 11-152
patch 11-153
pcolor 11-154
permute 11-155
plot 11-156
plot3 11-157
plotmatrix 11-158
plotyy 11-159
plus 11-160
polar 11-161
pow2 11-162
quantize 11-164
quantizer 11-167

Index-4

Index

quiver 11-171
quiver3 11-172
randquant 11-173
range 11-175
real 11-177
realmax 11-178
realmin 11-180
repmat 11-181
reset 11-184
resetlog 11-185
reshape 11-186
rgbplot 11-187
ribbon 11-188
rose 11-189
round 11-190
savefipref 11-192
scatter 11-193
scatter3 11-194
sdec 11-195
semilogx 11-196
semilogy 11-197
set 11-198
sign 11-199
single 11-200
size 11-201
slice 11-202
spy 11-203
squeeze 11-204
stairs 11-205
stem 11-206
stem3 11-207
streamribbon 11-208
streamslice 11-209
streamtube 11-210
stripscaling 11-211
sub 11-212
subsasgn 11-214
subsref 11-215
sum 11-216
surf 11-217

surfc 11-218
surfl 11-219
surfnorm 11-220
text 11-221
times 11-222
toeplitz 11-223
tostring 11-224
transpose 11-225
treeplot 11-226
tril 11-227
trimesh 11-228
triplot 11-229
trisurf 11-230
triu 11-231
uint16 11-233
uint32 11-234
uint8 11-232
uminus 11-235
uplus 11-236
upperbound 11-237
vertcat 11-238
voronoi 11-239
voronoin 11-240
waterfall 11-241
wordlength 11-242
xlim 11-243
ylim 11-244
zlim 11-245

G
ge function 11-79
get function 11-80
gplot function 11-81
gt function 11-82

H
hankel function 11-83
help

Index-5

Index

getting 1-3
hex function 11-84
hex property 9-3
hex2num function 11-85
hist function 11-86
histc function 11-87
horzcat function 11-88

I
imag function 11-89
inspect function 11-91
int function 11-92
int property 9-3
int16 function 11-95
int32 function 11-96
int8 function 11-94
interoperability

fi objects with Filter Design Toolbox 8-29
fi objects with Signal Processing

Blockset 8-7
fi objects with Simulink 8-2
Fixed-Point Toolbox with Embedded

MATLAB 8-11
intmax function 11-97
intmin function 11-98
ipermute function 11-99
iscolumn function 11-100
isempty function 11-101
isequal function 11-102
isfi function 11-103
isfinite function 11-105
isinf function 11-106
isnan function 11-107
isnumeric function 11-108
isobject function 11-110
isreal function 11-112
isrow function 11-113
isscalar function 11-114
issigned function 11-115

isvector function 11-116

L
le function 11-117
length function 11-118
line function 11-119
logging

overflows and underflows 5-7
logging modes

setting 5-7
LoggingMode property 9-10
logical function 11-120
loglog function 11-121
lowerbound function 11-122
lsb function 11-123
lt function 11-124

M
max function 11-125
maxlog function 11-126
MaxProductWordLength property 9-5
MaxSumWordLength property 9-5
mesh function 11-127
meshc function 11-128
meshz function 11-129
min function 11-130
minlog function 11-131
minus function 11-132
Mode property 9-16
Model Explorer

setting embedded.fimath properties 4-6
setting embedded.numerictype

properties 6-7
using with fixed-point Embedded

MATLAB 8-16
modular arithmetic 2-8
mpy function 11-133
mtimes function 11-135

Index-6

Index

multiplication
fixed-point 2-11

N
ndims function 11-136
ne function 11-137
nopnerations function 11-138
not function 11-139
noverflows function 11-140
num2bin function 11-141
num2hex function 11-142
num2int function 11-144
NumberDisplay property 9-11
numberofelements function 11-145
numerictype function 11-146
numerictype objects

constructing 6-2
properties

Bias 9-12
DataType 9-12
DataTypeMode 9-12
FixedExponent 9-13
FractionLength 9-14
Scaling 9-14
setting in the Model Explorer 6-7
Signed 9-14
Slope 9-14
SlopeAdjustmentFactor 9-15
WordLength 9-15

setting properties in the Model
Explorer 6-7

NumericType property 9-3
NumericTypeDisplay property 9-11
nunderflows function 11-150

O
oct function 11-151
oct property 9-4

one’s complement 2-10
or function 11-152
overflow handling 2-5

compared with ANSI C 2-25
OverflowMode property 9-5 9-17
overflows

logging 5-7

P
padding 2-17
patch function 11-153
pcolor function 11-154
permute function 11-155
plot function 11-156
plot3 function 11-157
plotmatrix function 11-158
plotyy function 11-159
plus function 11-160
polar function 11-161
pow2 function 11-162
precision

fixed-point data types 2-5
ProductFractionLength property 9-6
ProductMode property 9-6
ProductWordLength property 9-7
properties

Bias, numerictype objects 9-12
bin, fi objects 9-2
CastBeforeSum, fimath objects 9-5
Data, fi objects 9-2
DataType, numerictype objects 9-12
DataTypeMode, numerictype objects 9-12
double, fi objects 9-2
fimath, fi objects 9-2
FimathDisplay, fipref objects 9-10
FixedExponent, numerictype objects 9-13
Format, quantizers 9-16
FractionLength, numerictype

objects 9-14

Index-7

Index

hex, fi objects 9-3
int, fi objects 9-3
LoggingMode, fipref objects 9-10
MaxProductWordLength,

fimathobjects 9-5
MaxSumWordLength, fimath objects 9-5
Mode, quantizers 9-16
NumberDisplay, fipref objects 9-11
NumericType, fi objects 9-3
NumericTypeDisplay, fipref objects 9-11
oct, fi objects 9-4
OverflowMode, fimath objects 9-5
OverflowMode, quantizers 9-17
ProductFractionLength, fimath

objects 9-6
ProductMode, fimath objects 9-6
ProductWordLength, fimath objects 9-7
RoundMode, fimath objects 9-7
RoundMode, quantizers 9-18
Scaling, numerictype objects 9-14
Signed, numerictype objects 9-14
Slope, numerictype objects 9-14
SlopeAdjustmentFactor, numerictype

objects 9-15
SumFractionLength, fimath objects 9-8
SumMode, fimath objects 9-8
SumWordLength, fimath objects 9-9
WordLength, numerictype objects 9-15

property values
quantizer objects 7-4

Q
quantize function 11-164
quantizer function 11-167
quantizer objects

constructing 7-2
property values 7-4

quantizers

properties
Format 9-16
Mode 9-16
OverflowMode 9-17
RoundMode 9-18

quiver function 11-171
quiver3 function 11-172

R
randquant function 11-173
range

fixed-point data types 2-5
range function 11-175
rat format 9-11
reading fixed-point data from workspace 8-2
real function 11-177
realmax function 11-178
realmin function 11-180
repmat function 11-181
reset function 11-184
resetlog function 11-185
reshape function 11-186
rgbplot function 11-187
ribbon function 11-188
rose function 11-189
round function 11-190
rounding

fixed-point data types 2-6
RoundMode property 9-7 9-18
run-time API

fixed-point data 8-6

S
saturation 2-5
savefipref function 11-192
scaling 2-4
Scaling property 9-14
scatter function 11-193

Index-8

Index

scatter3 function 11-194
sdec function 11-195
semilogx function 11-196
semilogy function 11-197
set function 11-198
sign function 11-199
signal logging

fixed-point 8-6
Signed property 9-14
single function 11-200
size function 11-201
slice function 11-202
Slope property 9-14
SlopeAdjustmentFactor property 9-15
spy function 11-203
squeeze function 11-204
stairs function 11-205
stem function 11-206
stem3 function 11-207
streamribbon function 11-208
streamslice function 11-209
streamtube function 11-210
stripscaling function 11-211
sub function 11-212
subsasgn function 11-214
subsref function 11-215
sum function 11-216
SumFractionLength property 9-8
SumMode property 9-8
SumWordLength property 9-9
surf function 11-217
surfc function 11-218
surfl function 11-219
surfnorm function 11-220

T
text function 11-221
times function 11-222
toeplitz function 11-223

tostring function 11-224
transpose function 11-225
treeplot function 11-226
tril function 11-227
trimesh function 11-228
triplot function 11-229
trisurf function 11-230
triu function 11-231
two’s complement 2-9

U
uint16 function 11-233
uint32 function 11-234
uint8 function 11-232
uminus function 11-235
unary conversions 2-22
underflows

logging 5-7
uplus function 11-236
upperbound function 11-237

V
vertcat function 11-238
voronoi function 11-239
voronoin function 11-240

W
waterfall function 11-241
wordlength function 11-242
WordLength property 9-15
wrapping

fixed-point data types 2-5
writing fixed-point data to workspace 8-2

X
xlim function 11-243

Index-9

Index

Y
ylim function 11-244

Z
zlim function 11-245

Index-10

	toc
	Getting Started
	What Is the Fixed-Point Toolbox?
	Features

	Getting Help
	Getting Help in This Document
	Getting Help at the MATLAB Command Line

	Display Settings
	Demos

	Fixed-Point Concepts
	Fixed-Point Data Types
	Scaling
	Precision and Range
	Range
	Overflow Handling

	Precision
	Rounding Methods

	Arithmetic Operations
	Modulo Arithmetic
	Two's Complement
	Addition and Subtraction
	Multiplication
	Multiplication Data Types
	Multiplication with fimath

	Casts
	Casting from a Shorter Data Type to a Longer Data Type
	Casting from a Longer Data Type to a Shorter Data Type

	fi Objects Compared to C Integer Data Types
	Integer Data Types
	ANSI C Integer Data Types
	fi Integer Data Types

	Unary Conversions
	ANSI C Usual Unary Conversions
	fi Usual Unary Conversions

	Binary Conversions
	ANSI C Usual Binary Conversions
	fi Usual Binary Conversions

	Overflow Handling
	ANSI C Overflow Handling
	fi Overflow Handling

	Working with fi Objects
	Constructing fi Objects
	Examples of Constructing fi Objects
	Constructing a fi Object with Property Name/Property Value Pairs
	Constructing a fi Object Using a numerictype Object
	Determining Property Precedence
	Copying a fi Object

	fi Object Properties
	Data Properties
	fimath Properties
	numerictype Properties
	Setting Fixed-Point Properties at Object Creation
	Using Direct Property Referencing with fi

	fi Object Functions

	Working with fimath Objects
	Constructing fimath Objects
	fimath Object Properties
	Setting fimath Properties at Object Creation
	Using Direct Property Referencing with fimath
	Setting fimath Properties in the Model Explorer

	Using fimath Objects to Perform Fixed-Point Arithmetic
	Using fimath to Share Arithmetic Rules
	Using fimath ProductMode and SumMode
	FullPrecision
	KeepLSB
	KeepMSB
	SpecifyPrecision

	fimath Object Functions

	Working with fipref Objects
	Constructing fipref Objects
	fipref Object Properties
	Setting fipref Properties at Object Creation
	Using Direct Property Referencing with fipref

	Using fipref Objects to Set Display Preferences
	Using fipref Objects to Set Logging Preferences
	Logging Overflows and Underflows as Warnings
	Accessing Logged Information with Functions
	Using Min/Max Logging with Doubles Override to Choose Scaling

	fipref Object Functions

	Working with numerictype Objects
	Constructing numerictype Objects
	Examples of Constructing numerictype Objects
	Constructing a numerictype Object with Property Name/Property Va
	Copying a numerictype Object

	numerictype Object Properties
	Setting numerictype Properties at Object Creation
	Using Direct Property Referencing with numerictype Objects
	Setting numerictype Properties in the Model Explorer

	The numerictype Structure
	Properties That Affect the Slope
	Stored Integer Value and Real World Value

	Using numerictype Objects to Share Data Type and Scaling Setting
	numerictype Object Functions

	Working with quantizer Objects
	Constructing quantizer Objects
	quantizer Object Properties
	Quantizing Data with quantizer Objects
	Transformations for Quantized Data
	quantizer Object Functions

	Interoperability with Other Products
	Using fi Objects with Simulink
	Reading Fixed-Point Data from the Workspace
	Writing Fixed-Point Data to the Workspace
	Logging Fixed-Point Signals
	Accessing Fixed-Point Block Data During Simulation

	Using fi Objects with Signal Processing Blockset
	Reading Fixed-Point Signals from the Workspace
	Writing Fixed-Point Signals to the Workspace

	Using the Fixed-Point Toolbox with Embedded MATLAB
	Supported Functions and Limitations of Fixed-Point Embedded MATL
	Using the Model Explorer with Fixed-Point Embedded MATLAB
	Sharing Fixed-Point Embedded MATLAB Models

	Example: Implementing a Fixed-Point Direct Form FIR Using Embedd
	I. Program the Embedded MATLAB Block
	II. Prepare the Inputs
	III. Create the Model
	IV. Define the Input fimath Using the Model Explorer
	V. Run the Simulation

	Using fi Objects with Filter Design Toolbox

	Property Reference
	fi Object Properties
	bin
	data
	dec
	double
	fimath
	hex
	int
	NumericType
	oct

	fimath Object Properties
	CastBeforeSum
	MaxProductWordLength
	MaxSumWordLength
	OverflowMode
	ProductFractionLength
	ProductMode
	ProductWordLength
	RoundMode
	SumFractionLength
	SumMode
	SumWordLength

	fipref Object Properties
	FimathDisplay
	LoggingMode
	NumericTypeDisplay
	NumberDisplay

	numerictype Object Properties
	Bias
	DataType
	DataTypeMode
	FixedExponent
	FractionLength
	Scaling
	Signed
	Slope
	SlopeAdjustmentFactor
	WordLength

	quantizer Object Properties
	DataMode
	Format
	OverflowMode
	RoundMode

	Functions — Categorical List
	Bitwise Functions
	Constructor and Property Functions
	Data Manipulation Functions
	Data Type Functions
	Data Quantizing Functions
	Element-Wise Logical Operator Functions
	Math Operation Functions
	Matrix Manipulation Functions
	Plotting Functions
	Radix Conversion Functions
	Relational Operator Functions
	Statistics Functions
	Subscripted Assignment and Reference Functions
	fi Object Functions
	fimath Object Functions
	fipref Object Functions
	numerictype Object Functions
	quantizer Object Functions

	Functions — Alphabetical List
	Glossary
	Index

	tables
	Fixed-Point Toolbox Functions Supported for Use with Embedded MA

