Fixed-Point Toolbox For Use with MATLAB ${ }^{\circledR}$

Computation

Visualization

Programming

How to Contact The MathWorks:

www. mathworks.com
comp.soft-sys.matlab
support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
508-647-7000
508-647-7001
The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Point Toolbox User's Guide

© COPYRIGHT 2004-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

June 2004
October 2004
March 2005
September 2005

First printing
Online only
Online only
Online only

New for Version 1.0 (Release 14)
Version 1.1 (Release 14SP1)
Version 1.2 (Release 14SP2)
Version 1.3 (Release 14SP3)

Getting Started

What Is the Fixed-Point Toolbox? 1-2
Features 1-2
Getting Help 1-3
Getting Help in This Document 1-3
Getting Help at the MATLAB Command Line 1-3
Display Settings 1-5
Demos 1-7
Fixed-Point Concepts
2
Fixed-Point Data Types 2-2
Scaling 2-4
Precision and Range 2-5
Range 2-5
Precision 2-6
Arithmetic Operations 2-8
Modulo Arithmetic 2-8
Two's Complement 2-9
Addition and Subtraction 2-10
Multiplication 2-11
Casts 2-16
fi Objects Compared to C Integer Data Types 2-20
Integer Data Types 2-20
Unary Conversions 2-22
Binary Conversions 2-23
Overflow Handling 2-25
Working with fi Objects
3
Constructing fi Objects 3-2
Examples of Constructing fi Objects 3-3
fi Object Properties 3-10
Data Properties 3-10
fimath Properties 3-10
numerictype Properties 3-11
Setting Fixed-Point Properties at Object Creation 3-12
Using Direct Property Referencing with fi 3-13
fi Object Functions 3-14
Working with fimath Objects
4
Constructing fimath Objects 4-2
fimath Object Properties 4-4
Setting fimath Properties at Object Creation 4-4
Using Direct Property Referencing with fimath 4-5
Setting fimath Properties in the Model Explorer 4-6
Using fimath Objects to Perform Fixed-Point Arithmetic 4-8
Using fimath to Share Arithmetic Rules 4-10
Using fimath ProductMode and SumMode 4-12
FullPrecision 4-12
KeepLSB 4-13
KeepMSB 4-14
SpecifyPrecision 4-15
fimath Object Functions 4-17
Working with fipref Objects
5
Constructing fipref Objects 5-2
fipref Object Properties 5-3
Setting fipref Properties at Object Creation 5-3
Using Direct Property Referencing with fipref 5-3
Using fipref Objects to Set Display Preferences 5-5
Using fipref Objects to Set Logging Preferences 5-7
Logging Overflows and Underflows as Warnings 5-7
Accessing Logged Information with Functions 5-10
Using Min/Max Logging with Doubles Override to Choose Scaling 5-12
fipref Object Functions 5-13
Working with numerictype Objects
6
Constructing numerictype Objects 6-2
Examples of Constructing numerictype Objects 6-3
numerictype Object Properties 6-6
Setting numerictype Properties at Object Creation 6-6
Using Direct Property Referencing with numerictype Objects 6-7
Setting numerictype Properties in the Model Explorer 6-7
The numerictype Structure 6-10
Properties That Affect the Slope 6-11
Stored Integer Value and Real World Value 6-11
Using numerictype Objects to Share Data Type and Scaling Settings 6-12
numerictype Object Functions 6-15
Working with quantizer Objects
7
Constructing quantizer Objects 7-2
quantizer Object Properties 7-4
Quantizing Data with quantizer Objects 7-5
Transformations for Quantized Data 7-7
quantizer Object Functions 7-8
Interoperability with Other Products
8
Using fi Objects with Simulink 8-2
Reading Fixed-Point Data from the Workspace 8-2
Writing Fixed-Point Data to the Workspace 8-2
Logging Fixed-Point Signals 8-6
Accessing Fixed-Point Block Data During Simulation 8-6
Using fi Objects with Signal Processing Blockset 8-7
Reading Fixed-Point Signals from the Workspace 8-7
Writing Fixed-Point Signals to the Workspace 8-7
Using the Fixed-Point Toolbox with Embedded MATLAB 8-11
Supported Functions and Limitations of Fixed-Point Embedded MATLAB 8-11
Using the Model Explorer with Fixed-Point Embedded MATLAB 8-16
Example: Implementing a Fixed-Point Direct Form FIR Using Embedded MATLAB 8-20
Using fi Objects with Filter Design Toolbox 8-29
Property Reference
9
fi Object Properties 9-2
bin 9-2
data $9-2$
dec 9-2
double 9-2
fimath 9-2
hex 9-3
int 9-3
NumericType 9-3
oct 9-4
fimath Object Properties 9-5
CastBeforeSum 9-5
MaxProductWordLength 9-5
MaxSumWordLength 9-5
OverflowMode 9-5
ProductFractionLength 9-6
ProductMode 9-6
ProductWordLength 9-7
RoundMode 9-7
SumFractionLength 9-8
SumMode 9-8
SumWordLength 9-9
fipref Object Properties 9-10
FimathDisplay 9-10
LoggingMode 9-10
NumericTypeDisplay 9-11
NumberDisplay 9-11
numerictype Object Properties 9-12
Bias 9-12
DataType 9-12
DataTypeMode 9-12
FixedExponent 9-13
FractionLength 9-14
Scaling 9-14
Signed 9-14
Slope 9-14
SlopeAdjustmentFactor $9-15$
WordLength 9-15
quantizer Object Properties 9-16
DataMode 9-16
Format 9-16
OverflowMode 9-17
RoundMode 9-18
Functions - Categorical List
10
Bitwise Functions 10-2
Constructor and Property Functions 10-2
Data Manipulation Functions 10-3
Data Type Functions 10-5
Data Quantizing Functions 10-6
Element-Wise Logical Operator Functions 10-6
Math Operation Functions 10-6
Matrix Manipulation Functions 10-8
Plotting Functions $10-9$
Radix Conversion Functions 10-12
Relational Operator Functions 10-13
Statistics Functions 10-14
Subscripted Assignment and Reference Functions 10-15
fi Object Functions 10-16
fimath Object Functions 10-18
fipref Object Functions 10-19
numerictype Object Functions 10-20
quantizer Object Functions 10-21

Functions - Alphabetical List

11

Glossary

Index

Getting Started

What Is the Fixed-Point Toolbox? (p. 1-2)

Getting Help (p. 1-3)

Display Settings (p. 1-5)

Demos (p. 1-7)

Describes the Fixed-Point Toolbox and its major features

Tells you how to get help on Fixed-Point Toolbox objects, properties, and functions
Describes the fi object display settings used in the code examples in this User's Guide

Lists the Fixed-Point Toolbox demos

What Is the Fixed-Point Toolbox?

The Fixed-Point Toolbox provides fixed-point data types in MATLAB ${ }^{\circledR}$ and enables algorithm development by providing fixed-point arithmetic. The Fixed-Point Toolbox enables you to create the following types of objects:

- fi - Defines a fixed-point numeric object in the MATLAB workspace. Each fi object is composed of value data, a fimath object, and a numerictype object.
- fimath - Governs how overloaded arithmetic operators work with fi objects
- fipref - Defines the display and logging preferences of fi objects
- numerictype - Defines the data type and scaling attributes of fi objects
- quantizer - Quantizes data sets

Features

The Fixed-Point Toolbox provides you with

- The ability to define fixed-point data types, scaling, and rounding and overflow methods in the MATLAB workspace
- Bit-true real and complex simulation
- Basic fixed-point arithmetic with binary point-only signals
- Arithmetic operators +, -, *, .*
- Division using the divide function
- Arbitrary word length up to intmax('uint16') bits
- Logging of minimums, maximums, overflows, and underflows
- Relational, logical, and bitwise operators
- Statistics functions such as max and min
- Conversions between binary, hex, double, and built-in integers
- Interoperability with Simulink ${ }^{\circledR}$, Signal Processing Blockset, Embedded MATLAB, and Filter Design Toolbox
- Compatibility with the Simulink To Workspace and From Workspace blocks

Getting Help

This section tells you how to get help for the Fixed-Point Toolbox in this document and at the MATLAB command line.

Getting Help in This Document

The objects of the Fixed-Point Toolbox are discussed in the following chapters:

- Chapter 3, "Working with fi Objects"
- Chapter 4, "Working with fimath Objects"
- Chapter 5, "Working with fipref Objects"
- Chapter 6, "Working with numerictype Objects"
- Chapter 7, "Working with quantizer Objects"

To get in-depth information about the properties of these objects, refer to Chapter 9, "Property Reference".

To get in-depth information about the functions of these objects, refer to the Function Reference.

Getting Help at the MATLAB Command Line

To get command-line help for Fixed-Point Toolbox objects, type

```
help objectname
```

For example,

```
help fi
help fimath
help fipref
help numerictype
help quantizer
```

To invoke Help Browser documentation for Fixed-Point Toolbox functions from the MATLAB command line, type
doc fixedpoint/functionname
For example,
doc fixedpoint/int
doc fixedpoint/add
doc fixedpoint/savefipref
doc fixedpoint/quantize

Display Settings

In the Fixed-Point Toolbox, the display of fi objects is determined by the fipref object. Throughout this User's Guide, code examples of fi objects are usually shown as they appear when the fipref properties are set as follows:

- NumberDisplay - 'RealWorldValue'
- NumericTypeDisplay - 'full'
- FimathDisplay - 'none'

For example,

```
p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'full', 'FimathDisplay', 'none')
p =
            NumberDisplay: 'RealWorldValue'
            NumericTypeDisplay: 'full'
            FimathDisplay: 'none'
            LoggingMode: 'Off'
a = fi(pi)
a =
    3.1416
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
            WordLength: 16
            FractionLength: 13
```

In other cases, it makes sense to also show the fimath object display:

- NumberDisplay - 'RealWorldValue'
- NumericTypeDisplay - 'full'

```
- FimathDisplay - 'full'
For example,
    p = fipref('NumberDisplay', 'RealWorldValue',...
    'NumericTypeDisplay', 'full', 'FimathDisplay', 'full')
    p =
            NumberDisplay: 'RealWorldValue'
            NumericTypeDisplay: 'full'
            FimathDisplay: 'full'
            LoggingMode: 'Off'
    a = fi(pi)
    a =
            3.1416
            DataTypeMode: Fixed-point: binary point scaling
                Signed: true
                WordLength: 16
            FractionLength: 13
                RoundMode: nearest
            OverflowMode: saturate
            ProductMode: FullPrecision
        MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```

For more information, refer to Chapter 5, "Working with fipref Objects".

Demos

You can access demos in the Demos tab of the Help Navigator window. The Fixed-Point Toolbox includes the following demos:

- Number Circle - Illustrates the definitions of unsigned and signed two's complement integer and fixed-point numbers
- fi Basics - Demonstrates the basic use of the fixed-point object fi
- fi Binary Point Scaling - Explains binary point-only scaling
- Fixed-Point Doubles Override, Min/Max Logging, and Scaling — Steps through the workflow of using doubles override and min/max logging in the Fixed-Point Toolbox to choose appropriate scaling for a fixed-point algorithm
- Fixed-Point C Development - Shows how to use the parameters from a fixed-point MATLAB program in a fixed-point C program
- Fixed-Point Algorithm Development - Presents the development and verification of a simple fixed-point algorithm
- Fixed-Point Fast Fourier Transform (FFT) - Provides an example of converting a textbook Fast Fourier Transform algorithm into fixed-point MATLAB code and then into fixed-point C code
- Analysis of a Fixed-Point State-Space System with Limit Cycles Demonstrates a limit cycle detection routine applied to a state-space system
- Quantization Error - Demonstrates the statistics of the error when signals are quantized using various rounding methods

Fixed-Point Concepts

Fixed-Point Data Types (p. 2-2)
Scaling (p. 2-4) Precision and Range (p. 2-5)
Arithmetic Operations (p. 2-8)
fi Objects Compared to C Integer
Data Types (p. 2-20)

Defines fixed-point data types
Discusses the types of scaling used in the Fixed-Point Toolbox; binary point-only and [Slope Bias]

Discusses the concepts behind arithmetic operations in the Fixed-Point Toolbox.

Introduces the concepts behind arithmetic operations in the Fixed-Point Toolbox

Compares ANSI C integer data type ranges, conversions, and exception handling with those of fi objects

Fixed-Point Data Types

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of bits (1's and 0's). How hardware components or software functions interpret this sequence of 1's and 0's is defined by the data type.

Binary numbers are represented as either fixed-point or floating-point data types. This chapter discusses many terms and concepts relating to fixed-point numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position of the binary point, and whether it is signed or unsigned. The position of the binary point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed or unsigned) is shown below:

where

- b_{i} is the i th binary digit.
- $w l$ is the word length in bits.
- $b_{w l-1}$ is the location of the most significant, or highest, bit (MSB).
- b_{0} is the location of the least significant, or lowest, bit (LSB).
- The binary point is shown four places to the left of the LSB. In this example, therefore, the number is said to have four fractional bits, or a fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary fixed-point numbers are typically represented in one of three ways:

- Sign/magnitude
- One's complement
- Two's complement

Two's complement is the most common representation of signed fixed-point numbers and is the only representation used by the Fixed-Point Toolbox. Refer to "Two's Complement" on page 2-9 for more information.

Scaling

Fixed-point numbers can be encoded according to the scheme

$$
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
$$

where the slope can be expressed as

$$
\text { slope }=\text { fractional slope } \times \mathbf{2}^{\text {fixed exponent }}
$$

The integer is sometimes called the stored integer. This is the raw binary number, in which the binary point assumed to be at the far right of the word. In the Fixed-Point Toolbox, the negative of the fixed exponent is often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number with zero bias, only the slope affects the scaling. A fixed-point number that is only scaled by binary point position is equivalent to a number in [Slope Bias] representation that has a bias equal to zero and a fractional slope equal to one. This is referred to as binary point-only scaling or power-of-two scaling:

$$
\text { real-world value }=2^{\text {fixed exponent }} \times \text { integer }
$$

or

$$
\text { real-world value }=2^{-f r a c t i o n ~ l e n g t h ~} \times \text { integer }
$$

The Fixed-Point Toolbox supports both binary point-only scaling and [Slope Bias] scaling.

Note For examples of binary point-only scaling, see the Fixed-Point Toolbox demo "fi Binary Point Scaling."

Precision and Range

You must pay attention to the precision and range of the fixed-point data types and scalings you choose in order to know whether rounding methods will be invoked or if overflows or underflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling can represent. The range of representable numbers for a two's complement fixed-point number of word length $w l$, scaling S, and bias B is illustrated below:

For both signed and unsigned fixed-point numbers of any data type, the number of different bit patterns is 2^{wl}.

For example, in two's complement, negative numbers must be represented as well as zero, so the maximum value is $2^{\text {wl-1 }}-1$. Because there is only one representation for zero, there are an unequal number of positive and negative numbers. This means there is a representation for $-2^{\mathrm{wl}-1}$ but not for $2^{\mathrm{wl}-1}$:

$$
\text { For Slope = } 1 \text { and Bix = 0: }
$$

Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows and underflows can occur if the result of an operation is larger or smaller than the numbers in that range.

The Fixed-Point Toolbox allows you to either saturate or wrap overflows. Saturation represents positive overflows as the largest positive number
in the range being used, and negative overflows as the largest negative number in the range being used. Wrapping uses modulo arithmetic to cast an overflow back into the representable range of the data type. Refer to "Modulo Arithmetic" on page 2-8 for more information.

When you create a fi object in the Fixed-Point Toolbox, any overflows are saturated. The OverflowMode property of the default fimath object is saturate. You can log overflows and underflows by setting the LoggingMode property of the fipref object to on. Refer to "LoggingMode" on page 9-10 for more information.

Precision

The precision of a fixed-point number is the difference between successive values representable by its data type and scaling, which is equal to the value of its least significant bit. The value of the least significant bit, and therefore the precision of the number, is determined by the number of fractional bits. A fixed-point value can be represented to within half of the precision of its data type and scaling.

For example, a fixed-point representation with four bits to the right of the binary point has a precision of 2^{-4} or 0.0625 , which is the value of its least significant bit. Any number within the range of this data type and scaling can be represented to within $\left(2^{-4}\right) / 2$ or 0.03125 , which is half the precision. This is an example of representing a number with finite precision.

Rounding Methods

One of the limitations of representing numbers with finite precision is that not every number in the available range can be represented exactly. When the result of a fixed-point calculation is a number that cannot be represented exactly by the data type and scaling being used, precision is lost. A rounding method must be used to cast the result to a representable number. The Fixed-Point Toolbox currently supports the following rounding methods:

- floor, which is equivalent to truncation, rounds to the closest representable number in the direction of negative infinity.
- ceil rounds to the closest representable number in the direction of positive infinity.
- fix rounds to the closest representable integer in the direction of zero.
- convergent rounds to the closest representable integer. In the case of a tie, it rounds to the nearest even integer.
- nearest rounds to the closest representable integer. In the case of a tie, it rounds to the closest representable integer in the direction of positive infinity. This is the default rounding method for fi object creation and fi arithmetic.

Arithmetic Operations

The following sections describe the arithmetic operations used by the Fixed-Point Toolbox:

- "Modulo Arithmetic" on page 2-8
- "Two's Complement" on page 2-9
- "Addition and Subtraction" on page 2-10
- "Multiplication" on page 2-11
- "Casts" on page 2-16

These sections will help you understand what data type and scaling choices result in overflows or a loss of precision.

Modulo Arithmetic

Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of numbers, wrapping the results of any calculations that fall outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this system can only be 1 through 12 . Therefore, in the "clock" system, 9 plus 9 equals 6 . This can be more easily visualized as a number circle:
9...

...plus 9 more...

...equals 6.

Similarly, binary math can only use the numbers 0 and 1 , and any arithmetic results that fall outside this range are wrapped "around the circle" to either 0 or 1 .

Two's Complement

Two's complement is a way to interpret a binary number. In two's complement, positive numbers always start with a 0 and negative numbers always start with a 1 . If the leading bit of a two's complement number is 0 , the value is obtained by calculating the standard binary value of the number. If the leading bit of a two's complement number is 1 , the value is obtained by assuming that the leftmost bit is negative, and then calculating the binary value of the number. For example,

$$
\begin{aligned}
& 01=\left(0+2^{0}\right)=1 \\
& 11=\left(\left(-2^{1}\right)+\left(2^{0}\right)\right)=(-2+1)=-1
\end{aligned}
$$

To compute the negative of a binary number using two's complement,
1 Take the one's complement, or "flip the bits."
2 Add a 1 using binary math.
3 Discard any bits carried beyond the original word length.
For example, consider taking the negative of 11010 (-6). First, take the one's complement of the number, or flip the bits:

$$
11010 \longrightarrow 00101
$$

Next, add a 1 , wrapping all numbers to 0 or 1 :
00101
$\frac{+1}{00110}{ }_{(6)}$

Addition and Subtraction

The addition of fixed-point numbers requires that the binary points of the addends be aligned. The addition is then performed using binary arithmetic so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010.1	(18.5)
+0110.110	(6.75)
011001.010	(25.25)

Fixed-point subtraction is equivalent to adding while using the two's complement value for any negative values. In subtraction, the addends must be sign-extended to match each other's length. For example, consider subtracting 0110.110 (6.75) from 010010.1 (18.5):

The default fimath object has a value of 1 (true) for the CastBeforeSum property. This casts addends to the sum data type before addition. Therefore, no further shifting is necessary during the addition to line up the binary points.

If CastBeforeSum has a value of 0 (false), the addends are added with full precision maintained. After the addition the sum is then quantized.

Multiplication

The multiplication of two's complement fixed-point numbers is directly analogous to regular decimal multiplication, with the exception that the intermediate results must be sign-extended so that their left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication. The diagrams illustrate the differences between the data types used for real-real, complex-real, and complex-complex multiplication.

Real-Real Multiplication. The following diagram shows the data types used in the multiplication of two real numbers in the Fixed-Point Toolbox. The output of this multiplication is in the product data type, which is governed by the fimath ProductMode property:

Real-Complex Multiplication. The following diagram shows the data types used in the multiplication of a real and a complex fixed-point number in the Fixed-Point Toolbox. Real-complex and complex-real multiplication are equivalent. The output of this multiplication is in the product data type, which is governed by the fimath ProductMode property:

Complex-Complex Multiplication. The following diagram shows the multiplication of two complex fixed-point numbers in the Fixed-Point Toolbox. Note that the output of the multiplication is in the sum data type, which is governed by the fimath SumMode property. The product data type is determined by the fimath ProductMode property:

Multiplication with fimath

In the following examples, let

- F = fimath('ProductMode','FullPrecision',...
'SumMode', 'FullPrecision')
- T1 = numerictype('WordLength',24,'FractionLength',20)
- T2 = numerictype('WordLength', 16, 'FractionLength', 10)

Real*Real. Notice that the word length and fraction length of the result z are equal to the sum of the word lengths and fraction lengths, respectively, of the multiplicands. This is because the fimath SumMode and ProductMode properties are set to FullPrecision:

```
P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F)
x =
```

5

DataTypeMode: Fixed-point: binary point scaling

Signed: true
WordLength: 24
FractionLength: 20
$y=f i(10, T 2, F)$
$y=$

10

```
                    DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
                WordLength: 16
            FractionLength: 10
                z = x*y
                    Z =
            5 0
            DataTypeMode: Fixed-point: binary point scaling
                Signed: true
            WordLength: 40
            FractionLength: 30
```

Real*Complex. Notice that the word length and fraction length of the result z are equal to the sum of the word lengths and fraction lengths, respectively, of the multiplicands. This is because the fimath SumMode and ProductMode properties are set to FullPrecision:

```
x = fi(5,T1,F)
x =
```

5

```
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
                WordLength: 24
                    FractionLength: 20
y = fi(10+2i,T2,F)
y =
    10.0000 + 2.0000i
                    DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
                WordLength: 16
            FractionLength: 10
z = x*y
Z =
    50.0000 +10.0000i
    DataTypeMode: Fixed-point: binary point scaling
                Signed: true
        WordLength: 40
        FractionLength: 30
```

Complex*Complex. Complex-complex multiplication involves an addition as well as multiplication, so the word length of the full-precision result has one more bit than the sum of the word lengths of the multiplicands:

```
x = fi(5+6i,T1,F)
X =
```

```
        5.0000 + 6.0000i
            DataTypeMode: Fixed-point: binary point scaling
                Signed: true
                WordLength: 24
                FractionLength: 20
y = fi(10+2i,T2,F)
y =
    10.0000 + 2.0000i
            DataTypeMode: Fixed-point: binary point scaling
                            Signed: true
                WordLength: 16
                FractionLength: 10
z = x*y
Z =
    38.0000 +70.0000i
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
            WordLength: 41
            FractionLength: 30
```


Casts

The fimath object allows you to specify the data type and scaling of intermediate sums and products with the SumMode and ProductMode properties. It is important to keep in mind the ramifications of each cast when
you set the SumMode and ProductMode properties. Depending upon the data types you select, overflow and/or rounding might occur. The following two examples demonstrate cases where overflow and rounding can occur.

Casting from a Shorter Data Type to a Longer Data Type

Consider the cast of a nonzero number, represented by a 4-bit data type with two fractional bits, to an 8-bit data type with seven fractional bits:

This bit from the source data type "falls off" the high end with the shift up. Overflow might octur. The result will saturate or wrap.

These bits of the destination data type are padded with O's or l's.

As the diagram shows, the source bits are shifted up so that the binary point matches the destination binary point position. The highest source bit does not fit, so overflow might occur and the result can saturate or wrap. The empty bits at the low end of the destination data type are padded with either 0 's or 1's:

- If overflow does not occur, the empty bits are padded with 0's.
- If wrapping occurs, the empty bits are padded with 0's.
- If saturation occurs,
- The empty bits of a positive number are padded with 1's.
- The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow can still occur. This can happen when the integer length of
the source data type (in this case two) is longer than the integer length of the destination data type (in this case one). Similarly, rounding might be necessary even when casting from a shorter data type to a longer data type, if the destination data type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type

Consider the cast of a nonzero number, represented by an 8-bit data type with seven fractional bits, to a 4-bit data type with two fractional bits:

There is no value for this bit from the source, so the result must be sign-extended to fill the destination data type.

As the diagram shows, the source bits are shifted down so that the binary point matches the destination binary point position. There is no value for the highest bit from the source, so the result is sign-extended to fill the integer portion of the destination data type. The bottom five bits of the source do not fit into the fraction length of the destination. Therefore, precision can be lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all the integer bits are maintained. Conversely, full precision can be maintained even if you cast to a shorter data type, as long as the fraction length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of the destination data type are shorter than those of the source data type and scaling. In that case, both overflow and a loss of precision can occur.

fi Objects Compared to C Integer Data Types

The following sections compare the fi object with fixed-point data types and operations in C :

- "Integer Data Types" on page 2-20
- "Unary Conversions" on page 2-22
- "Binary Conversions" on page 2-23
- "Overflow Handling" on page 2-25

In these sections, the information on ANSI C is adapted from Samuel P. Harbison and Guy L. Steele Jr., C: A reference manual, 3rd ed., Prentice Hall, 1991.

Integer Data Types

This section compares the numerical range of $f i$ integer data types to the minimum numerical ranges of ANSI C integer data types.

ANSI C Integer Data Types

The following table shows the minimum ranges of ANSI C integer data types. The integer ranges can be larger than or equal to those shown, but cannot be smaller. The range of a long must be larger than or equal to the range of an int, which must be larger than or equal to the range of a short.

Note that the minimum ANSI C ranges are large enough to accommodate one's complement or sign/magnitude representation, but not two's complement representation. In the one's complement and sign/magnitude representations, a signed integer with n bits has a range from $-2^{n-1}+1$ to $2^{n-1}-1$, inclusive. In both of these representations, an equal number of positive and negative numbers are represented, and zero is represented twice.

Integer Type	Minimum	Maximum
signed char	-127	127
unsigned char	0	255

Integer Type	Minimum	Maximum
short int	$-32,767$	32,767
unsigned short	0	65,535
int	$-32,767$	32,767
unsigned int	0	65,535
long int	$-2,147,483,647$	$2,147,483,647$
unsigned long	0	$4,294,967,295$

fi Integer Data Types

The following table lists the numerical ranges of the integer data types of the fi object, in particular those equivalent to the C integer data types. The ranges are large enough to accommodate the two's complement representation, which is the only signed binary encoding technique supported by the Fixed-Point Toolbox. In the two's complement representation, a signed integer with n bits has a range from -2^{n-1} to $2^{n-1}-1$, inclusive. An unsigned integer with n bits has a range from 0 to $2^{n}-1$, inclusive. The negative side of the range has one more value than the positive side, and zero is represented uniquely.

Constructor	Signed	Word Length	Fraction Length	Minimum	Maximum	Closest ANSI C Equivalent
$\mathrm{fi}(\mathrm{x}, 1, n, 0)$	Yes	n $(2$ to $65,535)$	0	-2^{n-1}	$2^{n-1}-1$	N/A
$\mathrm{fi}(\mathrm{x}, 0, n, 0)$	No	n $(2$ to $65,535)$	0	0	$2^{n}-1$	N/A
$\mathrm{fi}(\mathrm{x}, 1,8,0)$	Yes	8	0	-128	127	signed char
$\mathrm{fi}(\mathrm{x}, 0,8,0)$	No	8	0	0	255	unsigned char
$\mathrm{fi}(\mathrm{x}, 1,16,0)$	Yes	16	0	$-32,768$	32,767	short int

Constructor	Signed	Word Length	Fraction Length	Minimum	Maximum	Closest ANSI C Equivalent
$\mathrm{fi}(\mathrm{x}, 0,16,0)$	No	16	0	0	65,535	unsigned short
$\mathrm{fi}(\mathrm{x}, 1,32,0)$	Yes	32	0	$-2,147,483,648$	$2,147,483,647$	long int
$\mathrm{fi}(\mathrm{x}, 0,32,0)$	No	32	0	0	$4,294,967,295$	unsigned long

Unary Conversions

Unary conversions dictate whether and how a single operand is converted before an operation is performed. This section discusses unary conversions in ANSI C and of fi objects.

ANSI C Usual Unary Conversions

Unary conversions in ANSI C are automatically applied to the operands of the unary !,,$- \sim$, and * operators, and of the binary << and >> operators, according to the following table:

Original Operand Type	ANSI C Conversion
char or short	int
unsigned char or unsigned short	int or unsigned int 1
float	float
Array of T	Pointer to T
Function returning T	Pointer to function returning T

${ }^{1}$ If type int cannot represent all the values of the original data type without overflow, the converted type is unsigned int.

fi Usual Unary Conversions

The following table shows the fi unary conversions:

C Operator	fi Equivalent	fi Conversion
$!\mathrm{x}$	$\sim \mathrm{x}=\operatorname{not}(\mathrm{x})$	Result is logical.
$\sim \mathrm{x}$	bitcmp (x)	Result is same numeric type as operand.
${ }^{*} \mathrm{x}$	No equivalent	N/A
$\mathrm{x} \ll \mathrm{n}$	bitshift (x, n) positive n	Result is same numeric type as operand. Overflow mode is obeyed: wrap or saturate if 1-valued bits are shifted off the left, or into the sign bit if the operand is signed. 0-valued bits are shifted in on the right.
$\mathrm{x} \gg \mathrm{n}$	bitshift $(\mathrm{x},-\mathrm{n})$	Result is same numeric type as operand. Round mode is obeyed if 1-valued bits are shifted off the right. 0 -valued bits are shifted in on the left if the operand is either signed and positive or unsigned. 1-valued bits are shifted in on the left if the operand is signed and negative.
+x	+x	Result is same numeric type as operand.
-x	-x	Result is same numeric type as operand. Overflow mode is obeyed. For example, overflow might occur when you negate an unsigned fi or the most negative value of a signed fi.

Binary Conversions

This section describes the conversions that occur when the operands of a binary operator are different data types.

ANSI C Usual Binary Conversions

In ANSI C, operands of a binary operator must be of the same type. If they are different, one is converted to the type of the other according to the first applicable conversion in the following table:

Type of One Operand	Type of Other Operand	ANSI C Conversion
long double	Any	long double
double	Any	double
float	Any	float
unsigned long	Any	unsigned long
long	unsigned	long or unsigned $_{\text {long }}$
long	int	long
unsigned	int or unsigned	unsigned
int	int	int

${ }^{1}$ Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions

When one of the operands of a binary operator ($+,-,{ }^{*}, . *$) is a fi object and the other is a MATLAB built-in numeric type, then the non-fi operand is converted to a fi object before the operation is performed, according to the following table:

Type of One Operand	Type of Other Operand	Properties of Other Operand After Conversion to a fi Object
fi	double or single	- Signed = same as the original fi operand - WordLength $=$ same as the original fi operand - FractionLength $=$ set to best precision possible
fi	int8	- Signed $=1$ - WordLength $=8$ - FractionLength $=0$

Type of One Operand	Type of Other Operand	Properties of Other Operand After Conversion to a fi Object
fi	uint8	- Signed $=0$ - WordLength $=8$ - FractionLength $=0$
fi	int16	- Signed $=1$ - WordLength $=16$ - FractionLength $=0$
fi	uint16	- Signed $=0$ - WordLength $=16$ - FractionLength $=0$
fi	int32	- Signed $=1$ - WordLength $=32$ - FractionLength $=0$
fi	uint32	- Signed $=0$ - WordLength $=32$ - FractionLength $=0$

Overflow Handling

The following sections compare how overflows are handled in ANSI C and the Fixed-Point Toolbox.

ANSI C Overflow Handling

In ANSI C, the result of signed integer operations is whatever value is produced by the machine instruction used to implement the operation. Therefore, ANSI C has no rules for handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling

Addition and multiplication with fi objects yield results that can be exactly represented by a fi object, up to word lengths of 65,535 bits or the available memory on your machine. This is not true of division, however, because many ratios result in infinite binary expressions. You can perform division with fi objects using the divide function, which requires you to explicitly specify the numeric type of the result.

The conditions under which a fi object overflows and the results then produced are determined by the associated fimath object. You can specify certain overflow characteristics separately for sums (including differences) and products. Refer to the following table:

| fimath Object Properties
 Related to Overflow
 Handling | Property Value | Description |
| :--- | :--- | :--- | | OverflowMode | 'saturate' | Overflows are saturated to the maximum
 or minimum value in the range. |
| :--- | :--- | :--- |
| ProductMode | 'wrap' | Overflows wrap using modulo arithmetic if
 unsigned, two's complement wrap if signed. |
| | 'FullPrecision' | Full-precision results are kept. Overflow
 does not occur. An error is thrown if the
 resulting word length is greater than
 MaxProductWordLength. |
| The rules for computing the resulting
 product word and fraction lengths are
 given in "ProductMode" on page 9-6. | | |

$\left.\left.\begin{array}{l|l|l}\hline \begin{array}{l}\text { fimath Object Properties } \\ \text { Related to Overflow } \\ \text { Handling }\end{array} & \text { Property Value } & \text { Description }\end{array} \begin{array}{lll}\hline & \text { 'KeepLSB' } & \begin{array}{l}\text { The least significant bits of the product are } \\ \text { kept. Full precision is kept, but overflow } \\ \text { is possible. This behavior models the C } \\ \text { language integer operations. } \\ \text { The resulting word length is determined } \\ \text { by the ProductWordLength property. If } \\ \text { ProductWordLength is greater than is } \\ \text { necessary for the full-precision product, } \\ \text { then the result is stored in the least } \\ \text { significant bits. If ProductWordLength is } \\ \text { less than is necessary for the full-precision } \\ \text { product, then overflow occurs. }\end{array} \\ \text { The rule for computing the resulting }\end{array}\right\} \begin{array}{l}\text { product fraction length is given in } \\ \text { "ProductMode" on page 9-6. }\end{array}\right\}$

| fimath Object Properties
 Related to Overflow
 Handling | Property Value | Description |
| :--- | :--- | :--- | | ProductWordLength | Positive integer | The word length of product results when
 ProductMode is 'KeepLSB ', 'KeepMSB', or
 'SpecifyPrecision '. |
| :--- | :--- | :--- |
| MaxProductWordLength | Positive integer | The maximum product word length allowed
 when ProductMode is 'FullPrecision '.
 The default is 128 bits. The maximum is
 65,535 bits. This property can help ensure
 that your simulation does not exceed your
 hardware requirements. |
| ProductFractionLength | Integer | The fraction length of product results when
 ProductMode is 'Specify Precision'. |
| SumMode | 'FullPrecision' | Full-precision results are kept. Overflow
 does not occur. An error is thrown if the
 resulting word length is greater than
 MaxSumWordLength. |
| | The rules for computing the resulting sum
 word and fraction lengths are given in
 "SumMode" on page 9-8. | |
| | 'KeepLSB' | The least significant bits of the sum are
 kept. Full precision is kept, but overflow
 is possible. This behavior models the C
 language integer operations.
 The resulting word length is determined
 by the SumWordLength property. If |
| SumWordLength is greater than is necessary | | |
| for the full-precision sum, then the result | | |
| is stored in the least significant bits. If | | |
| SumWordLength is less than is necessary | | |
| for the full-precision sum, then overflow | | |
| occurs. | | |

fimath Object Properties Related to Overflow Handling	Property Value	Description
		The rule for computing the resulting sum fraction length is given in "SumMode" on page 9-8.
	'KeepMSB '	The most significant bits of the sum are kept. Overflow is prevented, but precision may be lost. The resulting word length is determined by the SumWordLength property. If SumWordLength is greater than is necessary for the full-precision sum, then the result is stored in the most significant bits. If SumWordLength is less than is necessary for the full-precision sum, then rounding occurs. The rule for computing the resulting sum fraction length is given in "SumMode" on page 9-8.
	'SpecifyPrecision'	You can specify both the word length and the fraction length of the resulting sum.
SumWordLength	Positive integer	The word length of sum results when SumMode is 'KeepLSB', 'KeepMSB', or 'SpecifyPrecision'.
MaxSumWordLength	Positive integer	The maximum sum word length allowed when SumMode is 'FullPrecision'. The default is 128 bits. The maximum is 65,535 bits. This property can help ensure that your simulation does not exceed your hardware requirements.
SumFractionLength	Integer	The fraction length of sum results when SumMode is 'SpecifyPrecision'.

Working with fi Objects

Constructing fi Objects (p. 3-2)
fi Object Properties (p. 3-10)
fi Object Functions (p. 3-14)

Teaches you how to create fi objects
Tells you how to find more information about the properties associated with fi objects, and shows you how to set these properties

Introduces the functions in the toolbox that operate directly on fi
objects

Constructing fi Objects

You can create fi objects in the Fixed-Point Toolbox in one of two ways:

- You can use the fi constructor function to create a new object.
- You can use the fi constructor function to copy an existing fi object.

To get started, type
$a=f i(0)$
to create a fi object with the default data type and a value of 0 .
a =

0

```
DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
    WordLength: 16
FractionLength: 15
```

A signed fi object is created with a value of 0 , word length of 16 bits, and fraction length of 15 bits.

Note For information on the display format of fi objects, refer to "Display Settings" on page 1-5.

You can use the fi constructor function in the following ways:

- fi(v) returns a signed fixed-point object with value $v, 16$-bit word length, and best-precision fraction length.
- fi(v,s) returns a fixed-point object with value v, signedness $s, 16$-bit word length, and best-precision fraction length. s can be 0 (false) for unsigned or 1 (true) for signed.
- $f i(v, s, w)$ returns a fixed-point object with value v, signedness s, word length w, and best-precision fraction length.
- $f i(v, s, w, f)$ returns a fixed-point object with value v, signedness s, word length w, and fraction length f.
- fi(v,s,w,slope,bias) returns a fixed-point object with value v, signedness s, word length w, slope, and bias.
- fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns a fixed-point object with value v, signedness s, word length w, slope adjustment slopeadjustmentfactor, exponent fixedexponent, and bias bias.
- fi(v,T) returns a fixed-point object with value v and embedded. numerictype T. Refer to Chapter 6, "Working with numerictype Objects" for more information on numerictype objects.
- $f i(a, F)$ allows you to maintain the value and numerictype object of $f i$ object a, while changing its fimath object to F
- fi(v,T,F) returns a fixed-point object with value v, embedded. numerictype T, and embedded.fimath F. Refer to Chapter 4, "Working with fimath Objects" for more information on fimath objects.
- fi(...'PropertyName',PropertyValue...) and
fi('PropertyName', PropertyValue...) allow you to set properties for a fi object using property name/property value pairs.

Examples of Constructing fi Objects

For example, the following creates a fi object with a value of pi, a word length of 8 bits, and a fraction length of 3 bits.

```
a = fi(pi, 1, 8, 3)
a =
```

3.1250

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 8

FractionLength:

The value v can also be an array.

```
a = fi((magic(3)/10), 1, 16, 12)
a =
\begin{tabular}{lll}
0.8000 & 0.1001 & 0.6001 \\
0.3000 & 0.5000 & 0.7000 \\
0.3999 & 0.8999 & 0.2000
\end{tabular}
```

DataTypeMode: Fixed-point: binary point scaling Signed: true
WordLength: 16
FractionLength: 12
If you omit the argument f, it is set automatically to the best precision possible.

```
a = fi(pi, 1, 8)
a =
```

 3.1563
 DataTypeMode: Fixed-point: binary point scaling
 Signed: true
 WordLength: 8
 FractionLength: 5

If you omit w and f, they are set automatically to 16 bits and the best precision possible, respectively.

```
a = fi(pi, 1)
```

a $=$

```
    DataTypeMode: Fixed-point: binary point scaling
            Signed: true
        WordLength: 16
FractionLength: 13
```


Constructing a fi Object with Property Name/Property Value Pairs

You can use property name/property value pairs to set fi properties when you create the object:

```
a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')
a =
    3.1415
    DataTypeMode: Fixed-point: binary point scaling
                Signed: true
        WordLength: 16
        FractionLength: 13
```


Constructing a fi Object Using a numerictype Object

You can use a numerictype object to define a fi object:

```
T = numerictype
T =
DataTypeMode: Fixed-point: binary point scaling Signed: true
WordLength: 16
FractionLength: 15
```

```
a = fi(pi, T)
a =
    1.0000
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
                    WordLength: 16
            FractionLength: 15
            RoundMode: nearest
            OverflowMode: saturate
            ProductMode: FullPrecision
MaxProductWordLength: 128
                            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```

You can also use a fimath object with a numeric type object to define a fi object:

```
F = fimath
F =
                    RoundMode: nearest
    OverflowMode: saturate
            ProductMode: FullPrecision
        MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
a = fi(pi, T, F)
a =
```

```
            DataTypeMode: Fixed-point: binary point scaling
                Signed: true
            WordLength: 16
                FractionLength: 15
            RoundMode: nearest
                OverflowMode: saturate
            ProductMode: FullPrecision
MaxProductWordLength: 128
            SumMode: FullPrecision
MaxSumWordLength: }12
            CastBeforeSum: true
```


Determining Property Precedence

Note that the value of a property is taken from the last time it is set. For example, create a numerictype object with a value of true for the 'signed' property:

```
T = numerictype('signed', true)
T =
```

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 16
FractionLength: 15
Now create the following fi object in which the numerictype property is specified after the signed property, so that the resulting fi object is signed:

```
a = fi(pi,'signed',false,'numerictype',T)
a =
```

1.0000

DataTypeMode: Fixed-point: binary point scaling Signed: true
 WordLength: 16
 FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

Contrast this with the following fi object in which the numerictype property is specified before the signed property, so the resulting fi object is unsigned:
b = fi(pi,'numerictype', T,'signed',false)
b $=$
2.0000

DataTypeMode: Fixed-point: binary point scaling
Signed: false
WordLength: 16
FractionLength: 15
RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

Copying a fi Object

To copy a fi object, simply use assignment as in the following example:

```
a = fi(pi)
a =
    3.1416
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
                        WordLength: 16
        FractionLength: 13
b = a
b =
    3.1416
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
                WordLength: 16
                FractionLength: 13
```


fi Object Properties

The fi object has the following three general types of properties:

- "Data Properties" on page 3-10
- "fimath Properties" on page 3-10
- "numerictype Properties" on page 3-11

Data Properties

The data properties of a fi object are always writable:

- bin - Stored integer value of a fi object in binary
- data - Numerical real-world value of a fi object
- dec - Stored integer value of a fi object in decimal
- double - Real-world value of a fi object, stored as a MATLAB double
- hex - Stored integer value of a fi object in hexadecimal
- int — Stored integer value of a fi object, stored in a built-in MATLAB integer data type. You can also use int8, int16, int32, uint8, uint16, and uint32 to get the stored integer value of a fi object in these formats
- oct - Stored integer value of a fi object in octal

fimath Properties

When you create a fi object, a fimath object is also automatically created as a property of the fi object:

- fimath — fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi object. The properties of the fimath object listed below are always writable:

- CastBeforeSum - Whether both operands are cast to the sum data type before addition
- MaxProductWordLength - Maximum allowable word length for the product data type
- MaxSumWordLength - Maximum allowable word length for the sum data type
- ProductFractionLength - Fraction length, in bits, of the product data type
- ProductMode - Defines how the product data type is determined
- ProductWordLength - Word length, in bits, of the product data type
- RoundMode - Rounding mode
- SumFractionLength - Fraction length, in bits, of the sum data type
- SumMode - Defines how the sum data type is determined
- SumWordLength - The word length, in bits, of the sum data type

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a property of the fi object:

- numerictype - Object containing all the numeric type attributes of a fi object

The following numerictype properties are, by transitivity, also properties of a fi object. The properties of the numerictype object listed below are not writable once the fi object has been created. However, you can create a copy of a fi object with new values specified for the numerictype properties:

- Bias - Bias of a fi object
- DataType - Data type category associated with a fi object
- DataTypeMode - Data type and scaling mode of a fi object
- FixedExponent - Fixed-point exponent associated with a fi object
- SlopeAdjustmentFactor - Slope adjustment associated with a fi object
- FractionLength - Fraction length of the stored integer value of a fi object in bits
- Scaling - Fixed-point scaling mode of a fi object
- Signed - Whether a fi object is signed or unsigned
- Slope - Slope associated with a fi object
- WordLength - Word length of the stored integer value of a fi object in bits

These properties are described in detail in Chapter 9, "Property Reference". There are two ways to specify properties for fi objects in the Fixed-Point Toolbox. Refer to the following sections:

- "Setting Fixed-Point Properties at Object Creation" on page 3-12
- "Using Direct Property Referencing with fi" on page 3-13

Setting Fixed-Point Properties at Object Creation

You can set properties of fi objects at the time of object creation by including properties after the arguments of the fi constructor function. For example, to set the overflow mode to wrap and the rounding mode to convergent,

```
a = fi(pi, 'OverflowMode', 'wrap', 'RoundMode', 'convergent')
a =
```

3.1416

```
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
            WordLength: 16
                FractionLength: 13
            RoundMode: convergent
            OverflowMode: wrap
            ProductMode: FullPrecision
                MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```


Using Direct Property Referencing with fi

You can reference directly into a property for setting or retrieving fi object property values using MATLAB structure-like referencing. You do this by using a period to index into a property by name.

For example, to get the DataTypeMode of a,
a.DataTypeMode
ans =
Fixed-point: binary point scaling
To set the OverflowMode of a,

> a.OverflowMode = 'wrap'
a $=$
3.1416

> DataTypeMode: Fixed-point: binary point scaling
> Signed: true
> WordLength: 16
> FractionLength: 13
> RoundMode: convergent
> OverflowMode: wrap
> ProductMode: FullPrecision
> MaxProductWordLength: 128
> SumMode: FullPrecision
> MaxSumWordLength: 128
> CastBeforeSum: true

fi Object Functions

The functions in the following table operate directly on fi objects.

abs	all	and	any	area
bar	barh	bin	bitand	bitcmp
bitget	bitor	bitshift	bitxor	buffer
clabel	comet	comet3	compass	complex
coneplot	conj	contour	contour3	contourc
contourf	ctranspose	dec	diag	double
end	eps	eq	errorbar	etreeplot
ezcontour	ezcontourf	ezmesh	ezplot	ezplot3
ezpolar	ezsurf	ezsurfc	feather	fi
fimath	fplot	ge	get	gplot
gt	hankel	hex	hist	histc
horzcat	imag	innerprodintbits	inspect	int
int8	int16	int32	intmax	intmin
ipermute	iscolumn	isempty	isequal	isfi
isfinite	isinf	isnan	isnumeric	isobject
ispropequal	isreal	isrow	isscalar	issigned
isvector	le	length	line	logical
lowerbound	lsb	1t	max	mesh
meshc	meshz	min	minus	mtimes
ndims	ne	not	numberofelements	numerictype
oct	or	patch	pcolor	permute
plot	plot3	plotmatrix	plotyy	plus
polar	pow2	quantizer	quiver	quiver3
range	real	realmax	realmin	repmat
rescale	reshape	rgbplot	ribbon	rose

scatter	scatter3	sdec	sign	single
size	slice	spy	stairs	stem
stem3	streamribbon	streamslice	streamtube	stripscaling
subsasgn	subsref	sum	surf	surfc
surfl	surfnorm	text	times	toeplitz
transpose	treeplot	tril	trimesh	triplot
trisurf	triu	uint8	uint16	uint32
uminus	uplus	upperbound	vertcat	voronoi
voronoin	waterfall	xlim	ylim	zlim

You can learn about the functions associated with fi objects in the Function Reference.

The following data-access functions can be also used to get the data in a fi object using dot notation.

- bin
- data
- dec
- double
- hex
- int
- oct

For example,

$$
\begin{aligned}
& \mathrm{a}=\mathrm{fi}(\mathrm{pi}) ; \\
& \mathrm{n}=\operatorname{int}(\mathrm{a}) \\
& \mathrm{n}=
\end{aligned}
$$

```
a.int
ans =
    25736
h = hex(a)
h =
6 4 8 8
a.hex
ans =
6488
```


Working with fimath Objects

Constructing fimath Objects (p. 4-2) Teaches you how to create fimath objects
fimath Object Properties (p. 4-4) Using fimath Objects to Perform Fixed-Point Arithmetic (p. 4-8)
Using fimath to Share Arithmetic Rules (p. 4-10)
Using fimath ProductMode and SumMode (p. 4-12)
fimath Object Functions (p. 4-17)
Tells you how to find more information about the properties associated with fimath objects, and shows you how to set these properties
Gives examples of using fimath objects to control the results of fixed-point arithmetic with fi objects
Gives an example of using a fimath object to share modular arithmetic information among multiple fi objects
Shows the differences among the different settings of the ProductMode and SumMode properties
Introduces the functions in the toolbox that operate directly on fimath objects

Constructing fimath Objects

fimath objects define the arithmetic attributes of fi objects. You can create fimath objects in the Fixed-Point Toolbox in one of two ways:

- You can use the fimath constructor function to create a new object.
- You can use the fimath constructor function to copy an existing fimath object.

To get started, type
$F=$ fimath
to create a default fimath object.
$F=$ fimath

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

To copy a fimath object, simply use assignment as in the following example:

```
F = fimath;
G = F;
isequal(F,G)
ans =

The syntax
```

F = fimath(...'PropertyName',PropertyValue...)

```
allows you to set properties for a fimath object at object creation with property name/property value pairs. Refer to "Setting fimath Properties at Object Creation" on page 4-4.

\section*{fimath Object Properties}

The following properties of fimath objects are always writable:
- CastBeforeSum - Whether both operands are cast to the sum data type before addition
- MaxProductWordLength - Maximum allowable word length for the product data type
- MaxSumWordLength - Maximum allowable word length for the sum data type
- OverflowMode - Overflow-handling mode
- ProductFractionLength - Fraction length, in bits, of the product data type
- ProductMode - Defines how the product data type is determined
- ProductWordLength - Word length, in bits, of the product data type
- RoundMode - Rounding mode
- SumFractionLength - Fraction length, in bits, of the sum data type
- SumMode - Defines how the sum data type is determined
- SumWordLength - Word length, in bits, of the sum data type

These properties are described in detail in Chapter 9, "Property Reference". There are two ways to specify properties for fimath objects in the Fixed-Point Toolbox. Refer to the following sections:
- "Setting fimath Properties at Object Creation" on page 4-4
- "Using Direct Property Referencing with fimath" on page 4-5
- "Setting fimath Properties in the Model Explorer" on page 4-6

\section*{Setting fimath Properties at Object Creation}

You can set properties of fimath objects at the time of object creation by including properties after the arguments of the fimath constructor function. For example, to set the overflow mode to saturate and the rounding mode to convergent,
```

F = fimath('OverflowMode','saturate','RoundMode','convergent')
F =

```
            RoundMode: convergent
        OverflowMode: saturate
        ProductMode: FullPrecision
    MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true

\section*{Using Direct Property Referencing with fimath}

You can reference directly into a property for setting or retrieving fimath object property values using MATLAB structure-like referencing. You do this by using a period to index into a property by name.

For example, to get the RoundMode of F,
F.RoundMode
ans \(=\)
convergent
To set the OverflowMode of F,
F.OverflowMode = 'wrap'

F =

\section*{RoundMode: convergent}

OverflowMode: wrap
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

\section*{Setting fimath Properties in the Model Explorer}

You can view and change the properties for any fimath object defined in the MATLAB workspace in the Model Explorer. Open the Model Explorer by selecting View > Model Explorer in any Simulink model, or by typing daexplr at the MATLAB command line.

The figure below shows the Model Explorer when you define the following fimath objects in the MATLAB workspace:
```

F = fimath
F =
RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
G = fimath('OverflowMode','wrap')
G =
RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

```


Select the Base Workspace node in the Model Hierarchy pane to view the current objects in the Contents pane. When you select a fimath object in the Contents pane, you can view and change its properties in the Dialog pane.

\section*{Using fimath Objects to Perform Fixed-Point Arithmetic}

The fimath object encapsulates the math properties of the Fixed-Point Toolbox, and is itself a property of the fi object. Every fi object has a fimath object as a property.
```

a = fi(pi)

```
\(\mathrm{a}=\)
3.1416

DataTypeMode: Fixed-point: binary point scaling Signed: true
WordLength: 16
FractionLength: 13
RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
a.fimath
ans =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

To perform arithmetic with,,+- . , or *, two fi operands must have the same fimath properties.
\(a=f i(p i) ;\)
b = fi(8);
isequal(a.fimath, b.fimath)
ans =

1
\(a+b\)
ans =
11.1416

DataTypeMode: Fixed-point: binary point scaling Signed: true
WordLength: 19
FractionLength: 13
RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

\section*{Using fimath to Share Arithmetic Rules}

You can use a fimath object to define common arithmetic rules that you would like to use for many fi objects. You can then create multiple fi objects, using the same fimath object for each. To do so, you also need to create a numerictype object to define a common data type and scaling. Refer to Chapter 6, "Working with numerictype Objects" for more information on numerictype objects. The following example shows the creation of a numerictype object and fimath object, which are then used to create two fi objects with the same numerictype and fimath attributes:
```

T = numerictype('WordLength', 32, 'FractionLength', 30)
T =

```

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 32
FractionLength: 30
F = fimath('RoundMode', 'floor', 'OverflowMode', 'wrap')
\(F=\)

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
\(a=f i(p i, T, F)\)
a \(=\)
\(-0.8584\)
```

 DataTypeMode: Fixed-point: binary point scaling
 Signed: true
 WordLength: 32
 FractionLength: 30
 RoundMode: floor
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: }12
 CastBeforeSum: true
 b = fi(pi/2, T, F)
b =
1.5708
DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 32
FractionLength: 30
RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

```

\section*{Using fimath ProductMode and SumMode}

The following example shows the differences among the FullPrecision, KeepLSB, KeepMSB, and SpecifyPrecision settings of the ProductMode and SumMode properties. To follow along, first set the following display, overflow logging, and fixed-point math preferences:
```

p = fipref;
p.NumericTypeDisplay = 'short';
p.FimathDisplay = 'none';
p.LoggingMode = 'on';
F = fimath('OverflowMode','wrap','RoundMode','floor',...
'CastBeforeSum',false);
warning off
format compact

```

Next define fi objects a and b. Both have signed 8-bit data types. The fraction length is automatically chosen for each fi object to yield the best possible precision:
```

a = fi(pi, true, 8)
a =
3.1563
s8,5
b = fi(exp(1), true, 8)
b =
2.7188
s8,5

```

\section*{FullPrecision}

Now set ProductMode and SumMode for a and b to FullPrecision and look at some results:
```

F.ProductMode = 'FullPrecision';
F.SumMode = 'FullPrecision';
a.fimath = F;
b.fimath = F;
a
a =
3.1563 %011.00101

```
```

 s8,5
 b
b =
2.7188 %010.10111
s8,5
a*b
ans =
8.5811 %001000.1001010011
s16,10
a+b
ans =
5.8750 %0101.11100
s9,5

```

In Fullprecision mode, the product word length grows to the sum of the word lengths of the operands. In this case, each operand has 8 bits, so the product word length is 16 bits. The product fraction length is the sum of the fraction lengths of the operands, in this case \(5+5=10\) bits.

The sum word length grows by one most-significant bit to accommodate the possibility of a carry bit. The sum fraction length is aligned with the fraction lengths of the operands, and all fractional bits are kept for full precision. In this case, both operands have 5 fractional bits, so the sum has 5 fractional bits.

\section*{KeepLSB}

Now set ProductMode and SumMode for a and b to KeepLSB and look at some results:
```

F.ProductMode = 'KeepLSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepLSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =
3.1563 %011.00101
s8,5
b

```
```

b =
2.7188 %010.10111
s8,5
a*b
ans =
0.5811 %00.1001010011
s12,10
a+b
ans =
5.8750 %0000101.11100
s12,5

```

In KeepLSB mode, you specify the word lengths and the least-significant bits of results are automatically kept. This mode models the behavior of integer operations in the C language.

The product fraction length is the sum of the fraction lengths of the operands. In this case, each operand has 5 fractional bits, so the product fraction length is 10 bits. In this mode, all 10 fractional bits are kept. Overflow occurs because the full-precision result requires 6 integer bits, and only 2 integer bits remain in the product.

The sum fraction length is aligned with the fraction lengths of the operands, and in this model all least-significant bits are kept. In this case, both operands had 5 fractional bits, so the sum has 5 fractional bits. The full-precision result requires 4 integer bits, and 7 integer bits remain in the sum, so no overflow occurs in the sum.

\section*{KeepMSB}

Now set ProductMode and SumMode for \(a\) and \(b\) to KeepMSB and look at some results:
```

F.ProductMode = 'KeepMSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepMSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a

```
```

a =
3.1563 %011.00101
s8,5
b
b =
2.7188 %010.10111
s8,5
a*b
ans =
8.5781 %001000.100101
s12,6
a+b
ans =
5.8750 %0101.11100000
s12,8

```

In KeepMSB mode, you specify the word lengths and the most-significant bits of sum and product results are automatically kept. This mode models the behavior of many DSP devices where the product and sum are kept in double-wide registers, and the programmer chooses to transfer the most-significant bits from the registers to memory after each operation.

The full-precision product requires 6 integer bits, and the fraction length of the product is adjusted to accommodate all 6 integer bits in this mode. No overflow occurs. However, the full-precision product requires 10 fractional bits, and only 6 are available. Therefore, precision is lost.

The full-precision sum requires 4 integer bits, and the fraction length of the sum is adjusted to accommodate all 4 integer bits in this mode. The full-precision sum requires only 5 fractional bits; in this case there are 8 , so there is no loss of precision.

\section*{SpecifyPrecision}

Now set ProductMode and SumMode for a and b to SpecifyPrecision and look at some results:
```

F.ProductMode = 'SpecifyPrecision';
F.ProductWordLength = 8;
F.ProductFractionLength = 7;

```
```

F.SumMode = 'SpecifyPrecision';
F.SumWordLength = 8;
F.SumFractionLength = 7;
a.fimath = F;
b.fimath = F;
a
a =
3.1563 %011.00101
s8,5
b
b =
2.7188 %010.10111
s8,5
a*b
ans =
0.5781 %0.1001010
s8,7
a+b
ans =
-0.1250 %1.1110000
s8,7

```

In SpecifyPrecision mode, you must specify both word length and fraction length for sums and products. This example unwisely uses fractional formats for the products and sums, with 8-bit word lengths and 7-bit fraction lengths.

The full-precision product requires 6 integer bits, and the example specifies only 1 , so the product overflows. The full-precision product requires 10 fractional bits, and the example only specifies 7 , so there is precision loss in the product.

The full-precision sum requires 2 integer bits, and the example specifies only 1 , so the sum overflows. The full-precision sum requires 5 fractional bits, and the example specifies 7, so there is no loss of precision in the sum.

\section*{fimath Object Functions}

The following functions operate directly on fimath objects:
- add
- disp
- fimath
- isequal
- isfimath
- mpy
- sub

You can learn about the functions associated with fimath objects in the Function Reference in the Fixed-Point Toolbox online documentation.

4 Working with fimath Objects

\section*{Working with fipref Objects}
\begin{tabular}{ll} 
Constructing fipref Objects (p. 5-2) & \begin{tabular}{l} 
Teaches you how to create fipref \\
objects
\end{tabular} \\
fipref Object Properties (p. 5-3) & \begin{tabular}{l} 
Tells you how to find more \\
information about the properties \\
associated with fipref objects, \\
and shows you how to set these \\
properties
\end{tabular} \\
Using fipref Objects to Set Display & \begin{tabular}{l} 
Gives examples of using fipref \\
objects to set display preferences for \\
fi objects
\end{tabular} \\
Preferences (p. 5-5) & \begin{tabular}{l} 
Gives examples of using fipref \\
objects to set logging preferences for \\
fi objects
\end{tabular} \\
Using fipref Objects to Set Logging \\
Preferences (p. 5-7) & \begin{tabular}{l} 
Introduces the functions in the \\
toolbox that operate directly on
\end{tabular} \\
fipref objects
\end{tabular}

\section*{Constructing fipref Objects}

The fipref object defines the display and logging attributes for all fi objects. You can use the fipref constructor function to create a new object.

To get started, type
\[
P=\text { fipref }
\]
to create a default fipref object.
\(P=\)

> NumberDisplay: 'RealWorldValue' NumericTypeDisplay: 'full'
> FimathDisplay: 'full'
> LoggingMode: 'Off'

The syntax
```

P = fipref(...'PropertyName','PropertyValue'...)

```
allows you to set properties for a fipref object at object creation with property name/property value pairs.

Your fipref settings persist throughout your MATLAB session. Use reset (fipref) to return to the default settings during your session. Use savefipref to save your display preferences for subsequent MATLAB sessions.

\section*{fipref Object Properties}

The following properties of fipref objects are always writable:
- FimathDisplay - Display options for the fimath attributes of a fi object
- NumericTypeDisplay - Display options for the numeric type attributes of a fi object
- NumberDisplay - Display options for the value of a fi object
- LoggingMode - Logging options for operations performed on fi objects

These properties are described in detail in Chapter 9, "Property Reference". There are two ways to specify properties for fipref objects in the Fixed-Point Toolbox. Refer to the following sections:
- "Setting fipref Properties at Object Creation" on page 5-3
- "Using Direct Property Referencing with fipref" on page 5-3

\section*{Setting fipref Properties at Object Creation}

You can set properties of fipref objects at the time of object creation by including properties after the arguments of the fipref constructor function. For example, to set NumberDisplay to bin and NumericTypeDisplay to short,
```

P = fipref('NumberDisplay', 'bin', 'NumericTypeDisplay', 'short')
P =
NumberDisplay: 'bin'
NumericTypeDisplay: 'short'
FimathDisplay: 'full'
LoggingMode: 'Off'

```

\section*{Using Direct Property Referencing with fipref}

You can reference directly into a property for setting or retrieving fipref object property values using MATLAB structure-like referencing. You do this by using a period to index into a property by name.

For example, to get the NumberDisplay of P , P.NumberDisplay
ans \(=\)
bin

To set the NumericTypeDisplay of P,
P.NumericTypeDisplay = 'full'
\(P=\)
NumberDisplay: 'bin'
NumericTypeDisplay: 'full'
FimathDisplay: 'full'
LoggingMode: 'Off'

\section*{Using fipref Objects to Set Display Preferences}

You use the fipref object to dictate three aspects of the display of fi objects: how the value of a fi object is displayed, how the fimath properties are displayed, and how the numerictype properties are displayed.

For example, the following shows the default fipref display for a fi object:
\[
\begin{aligned}
& a=f i(p i) \\
& a= \\
& 3.1416
\end{aligned}
\]

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
Now, change the fipref display properties:
```

P = fipref;
P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'
P =

```
```

 NumberDisplay: 'bin'
    ```
    NumberDisplay: 'bin'
    NumericTypeDisplay: 'short'
    NumericTypeDisplay: 'short'
        FimathDisplay: 'none'
```

 FimathDisplay: 'none'
    ```

\section*{LoggingMode: 'Off'}
```

a
a =
0110010010001000
(two's complement bin)
s16,13

```

\section*{Using fipref Objects to Set Logging Preferences}

When the LoggingMode property of the fipref object is set to on, overflows and underflows are logged as warnings. When LoggingMode is on, you can also have minimum and maximum values and the number of overflows, underflows, and quantization errors returned to you using functions. Refer to the following sections:
- "Logging Overflows and Underflows as Warnings" on page 5-7
- "Accessing Logged Information with Functions" on page 5-10
- "Using Min/Max Logging with Doubles Override to Choose Scaling" on page 5-12

\section*{Logging Overflows and Underflows as Warnings}

Overflows and underflows are logged as warnings for all assignment, plus, minus, and multiplication operations when the fipref LoggingMode property is set to on. For example, try the following:

1 Create a signed fi object that is a vector of values from 1 to 5 , with 8 -bit word length and 6-bit fraction length.
\[
a=f i(1: 5,1,8,6) ;
\]

2 Define the fimath object associated with a, and indicate that you will specify the sum and product word and fraction lengths.
```

F = a.fimath;
F.SumMode = 'SpecifyPrecision';
F.ProductMode = 'SpecifyPrecision';
a.fimath = F;

```

3 Define the fipref object and turn on overflow and underflow logging.
```

P = fipref;
P.LoggingMode = 'on';

```

4 Suppress the numerictype and fimath displays.
```

P.NumericTypeDisplay = 'none';

```
```

P.FimathDisplay = 'none';

```

5 Specify the sum and product word and fraction lengths.
```

a.SumWordLength = 16;
a.SumFractionLength = 15;
a.ProductWordLength = 16;
a.ProductFractionLength = 15;

```

6 Warnings are displayed for overflows and underflows in assignment operations. For example, try:
```

a(1) = pi
Warning: 1 overflow occurred in the fi assignment operation.
a =
1.9844 1.9844 1.9844 1.9844 1.9844
a(1) = double(eps(a))/10
Warning: 1 underflow occurred in the fi assignment operation.
a =
0 1.9844 1.9844 1.9844 1.9844

```

7 Warnings are displayed for overflows and underflows in addition and subtraction operations. For example, try:
```

a+a
Warning: 12 overflows occurred in the fi + operation.
ans =
01.0000 1.0000 1.0000 1.0000
a-a
Warning: 8 overflows occurred in the fi - operation.
ans =
0}000000

```

8 Warnings are displayed for overflows and underflows in multiplication operations. For example, try:
```

a.*a
Warning: 4 product overflows occurred in the fi .* operation.
ans =
0}1.0000 1.0000 1.0000 1.0000
a*a'
Warning: 4 product overflows occurred in the fi * operation.
Warning: 3 sum overflows occurred in the fi * operation.
ans =
1.0000

```

The final example above is a complex multiplication that requires both multiplication and addition operations. The warnings inform you of overflows and underflows in both.

Because overflows and underflows are logged as warnings, you can use the dbstop MATLAB function with the syntax
dbstop if warning
to find the exact lines in an M-file that are causing overflows or underflows.
Use
dbstop if warning fi:underflow
to stop only on lines that cause an underflow. Use dbstop if warning fi:overflow
to stop only on lines that cause an overflow.

\section*{Accessing Logged Information with Functions}

When the fipref LoggingMode property is set to on, you can use the following functions to return logged information to the MATLAB command line:
- maxlog - Returns the maximum real-world value
- minlog — Returns the minimum value
- noperations - Returns the number of quantization operations
- noverflows - Returns the number of overflows
- nunderflows - Returns the number of underflows

LoggingMode must be set to on before you perform any assignment or math operation in order to log information about that operation. To clear the log, use the function resetlog.

For example, consider the following. First turn logging on, then perform operations, and then finally get information about the operations:
```

fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
maxlog(x)
ans =
3
minlog(x)
ans =
-1.5000
noperations(x)
ans =

```
4
```

noverflows(x)
ans =
2
nunderflows(x)
ans =
1

```

Next, reset the log and request the same information again. Note that the functions return empty [], because logging has been reset since the operations were run:
```

resetlog(x)
maxlog(x)
ans =
[]
minlog(x)
ans =
[]
noperations(x)
ans =
[]
noverflows(x)
ans =

```
nunderflows(x)
ans =
```

 []

Using Min/Max Logging with Doubles Override to Choose Scaling

Choosing the scaling for the fixed-point variables in your algorithms can be difficult. In the Fixed-Point Toolbox, you can use a combination of doubles override and $\mathrm{min} / \mathrm{max}$ logging to help you discover the numerical ranges that your fixed-point data types need to cover. These ranges dictate the appropriate scalings for your fixed-point data types. In general, the procedure is

1 Set the DataType property of all the numerictype objects in your algorithm to double. This enables you to run the algorithm in floating-point mode.

2 Set the fipref LoggingMode property to on.
3 Use the maxlog and minlog functions to log the maximum and minimum values achieved by the variables in your algorithm in floating-point mode.

4 Use the information obtained in step 3 to set the fixed-point scaling for each variable in your algorithm such that the full numerical range of each variable is representable by its data type and scaling.

A detailed example of this process is shown in the Fixed-Point Toolbox "Fixed-Point Doubles Override, Min/Max Logging, and Scaling" demo.

fipref Object Functions

The following functions operate directly on fipref objects:

- disp
- fipref
- reset
- savefipref

You can learn about the functions associated with fipref objects in the Function Reference.

Working with numerictype Objects

\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Constructing numerictype Objects } \\
\text { (p. 6-2) }\end{array} & \begin{array}{l}\text { Teaches you how to create } \\
\text { numerictype objects }\end{array} \\
\text { numerictype Object Properties } & \begin{array}{l}\text { Tells you how to find more } \\
\text { information about the properties } \\
\text { associated with numerictype objects, } \\
\text { and shows you how to set these } \\
\text { properties }\end{array} \\
\text { The numerictype Structure (p. 6-10) } & \begin{array}{l}\text { Presents the numerictype object as } \\
\text { a MATLAB structure, and gives the } \\
\text { valid fields and settings for those }\end{array}
$$

fields\end{array}\right\}\)| Using numerictype Objects to Share |
| :--- | :--- | | Gives an example of using a |
| :--- |
| numerictype object to share |
| Data Type and Scaling Settings |
| (p. 6-12) |\quad| modular data type and scaling |
| :--- |
| information among multiple fi |
| objects |

Constructing numerictype Objects

numerictype objects define the data type and scaling attributes of fi objects. You can create numerictype objects in the Fixed-Point Toolbox in one of two ways:

- You can use the numerictype constructor function to create a new object.
- You can use the numerictype constructor function to copy an existing numerictype object.

To get started, type
T = numerictype
to create a default numerictype object.
$\mathrm{T}=$

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 16
FractionLength: 15
You can use the numerictype constructor function in the following ways:

- $\mathrm{T}=$ numerictype creates a default numerictype object.
- T = numerictype(s) creates a numerictype object with Fixed-point: binary point scaling, signedness s, 16 -bit word length and 15 -bit fraction length.
- T = numerictype(s,w) creates a numerictype object with Fixed-point: binary point scaling, signedness s, word length w and 15 -bit fraction length.
- T = numerictype(s,w,f) creates a numerictype object with Fixed-point: binary point scaling, signedness s, word length w and fraction length f.
- $T=$ numerictype(s,w,slope,bias) creates a numerictype object with Fixed-point: slope and bias scaling, signedness s, word length w, slope, and bias.
- T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias) creates a numerictype object with Fixed-point: slope and bias scaling, signedness s, word length w, slopeadjustmentfactor, fixedexponent, and bias.
- T = numerictype (property1, value1, ...) allows you to set properties for a numerictype object using property name/property value pairs.
- T = numerictype(T1, property1, value1, ...) allows you to make a copy of an existing numerictype object, while modifying any or all of the property values.

Examples of Constructing numerictype Objects

For example, the following creates a signed numerictype object with a 32 -bit word length and 30-bit fraction length.

```
T = numerictype(1, 32, 30)
T =
```

```
    DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
            WordLength: 32
FractionLength: 30
```

If you omit the argument f, it is automatically set to the best precision possible.

```
T = numerictype(1, 32)
T =
```

```
DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
    WordLength: 32
```


FractionLength: 15

If you omit w and f, they are set automatically to 16 bits and the best precision possible, respectively.

```
T = numerictype(1)
T =
```

```
    DataTypeMode: Fixed-point: binary point scaling
            Signed: true
        WordLength: 16
FractionLength: 15
```


Constructing a numerictype Object with Property Name/Property Value Pairs

You can use property name/property value pairs to set numerictype properties when you create the object.

```
T = numerictype('Signed', true, 'DataTypeMode', ...
'Fixed-point: slope and bias', 'WordLength', 32, 'Slope', ...
2^-2, 'Bias', 4)
T =
```

```
DataTypeMode: Fixed-point: slope and bias scaling
```

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true
Signed: true
WordLength: 32
WordLength: 32
Slope: 0.25
Slope: 0.25
Bias: 4

```
            Bias: 4
```


Copying a numerictype Object

To copy a numerictype object, simply use assignment as in the following example:

```
T = numerictype;
U = T;
isequal(T,U)
ans =
```


numerictype Object Properties

All the properties of a numerictype object are writable. However, the numerictype properties of a fi object are not writable once the fi object has been created:

- Bias - Bias
- DataType - Data type category
- DataTypeMode - Data type and scaling mode
- FixedExponent - Fixed-point exponent
- SlopeAdjustmentFactor - Slope adjustment
- FractionLength - Fraction length of the stored integer value, in bits
- Scaling - Fixed-point scaling mode
- Signed - Signed or unsigned
- Slope - Slope
- WordLength - Word length of the stored integer value, in bits

These properties are described in detail in Chapter 9, "Property Reference". There are two ways to specify properties for numerictype objects in the Fixed-Point Toolbox. Refer to the following sections:

- "Setting numerictype Properties at Object Creation" on page 6-6
- "Using Direct Property Referencing with numerictype Objects" on page 6-7
- "Setting numerictype Properties in the Model Explorer" on page 6-7

Setting numerictype Properties at Object Creation

You can set properties of numerictype objects at the time of object creation by including properties after the arguments of the numerictype constructor function. For example, to set the word length to 32 bits and the fraction length to 30 bits,

```
T = numerictype('WordLength', 32, 'FractionLength', 30)
T =
```

```
    DataTypeMode: Fixed-point: binary point scaling
        Signed: true
        WordLength: 32
FractionLength: 30
```


Using Direct Property Referencing with numerictype Objects

You can reference directly into a property for setting or retrieving numerictype object property values using MATLAB structure-like referencing. You do this by using a period to index into a property by name.

For example, to get the word length of T ,
T.WordLength
ans $=$

32

To set the fraction length of T,
T.FractionLength = 31

T =

```
    DataTypeMode: Fixed-point: binary point scaling
            Signed: true
        WordLength: 32
FractionLength: 31
```


Setting numerictype Properties in the Model Explorer

You can view and change the properties for any numerictype object defined in the MATLAB workspace in the Model Explorer. Open the Model Explorer by selecting View > Model Explorer in any Simulink model, or by typing daexplr at the MATLAB command line.

The figure below shows the Model Explorer when you define the following numerictype objects in the MATLAB workspace:

```
T = numerictype
T =
```

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 16
FractionLength: 15
U = numerictype('DataTypeMode', 'Fixed-point: slope and bias')
U =

```
DataTypeMode: Fixed-point: slope and bias scaling
            Signed: true
        WordLength: 16
            Slope: 2^-15
            Bias: O
```


Select the Base Workspace node in the Model Hierarchy pane to view the current objects in the Contents pane. When you select a numerictype
object in the Contents pane, you can view and change its properties in the Dialog pane.

The numerictype Structure

The numerictype object contains all the data type and scaling attributes of a fi object. The object acts the same way as any MATLAB structure, except that it only lets you set valid values for defined fields. The following table shows the possible settings of each field of the structure that are valid for fi objects.

DataTypeMode	Data- Type	Scaling	Signed	Word- Length	Fraction- Length	Slope	Bias
Fully specified fixed-point data types Fixed-point: binary point scaling Fixed-point: slope and bias scaling	fixed	BinaryPoint	$1 / 0$	w	f	1	0

Partially specified fixed-point data type

Fixed-point: unspecified scaling	fixed	Unspecified	$1 / 0$	w	N/A	N/A	N/A

Built-in data types

double	double	N/A	1	64	0	1	0
single	single	N/A	1	32	0	1	0
boolean	boolean	N/A	0	1	0	1	0
int8	fixed	BinaryPoint	1	8	0	1	0
int16	fixed	BinaryPoint	1	16	0	1	0
int32	fixed	BinaryPoint	1	32	0	1	0
uint8	fixed	BinaryPoint	0	8	0	1	0
uint16	fixed	BinaryPoint	0	16	0	1	0
uint32	fixed	BinaryPoint	0	32	0	1	0

You cannot change the numerictype properties of a fi object after fi object creation.

Properties That Affect the Slope

The Slope field of the numerictype structure is related to the SlopeAdjustmentFactor and FixedExponent properties by

```
slope \(=\) slope adjustment factor \(\times 2^{\text {fixed exponent }}\)
```

The FixedExponent and FractionLength properties are related by

```
fixed exponent = -fraction length
```

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength property, the Slope field is modified.

Stored Integer Value and Real World Value

The numerictype StoredIntegerValue and RealWorldValue properties are related according to

$$
\text { real-world value }=\text { stored integer value } \times 2^{(- \text {fraction length })}
$$

which is equivalent to

$$
\begin{aligned}
& \text { real-world value }=\text { stored integer value } \\
& \times\left(\text { slope adjustment factor } \times \mathbf{2}^{\text {fixed exponent }}\right)+\text { bias }
\end{aligned}
$$

If any of these properties is updated, the others are modified accordingly.

Using numerictype Objects to Share Data Type and Scaling Settings

You can use a numerictype object to define common data type and scaling rules that you would like to use for many fi objects. You can then create multiple fi objects, using the same numerictype object for each. The following example shows the creation of a numerictype object, which is then used to create two fi objects with the same numerictype attributes:

```
format long g
T = numerictype('WordLength',32,'FractionLength',28)
T =
    DataTypeMode: Fixed-point: binary point scaling
            Signed: true
        WordLength: 32
        FractionLength: 28
a = fi(pi,T)
a =
3.1415926553309
DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 32
FractionLength: 28
RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
```

```
b = fi(pi/2, T)
b =
                1.5707963258028
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
                            WordLength: 32
                FractionLength: 28
                    RoundMode: nearest
            OverflowMode: saturate
            ProductMode: FullPrecision
    MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```

The following example shows the creation of a numerictype object with [Slope Bias] scaling, which is then used to create two fi objects with the same numerictype attributes:

```
T = numerictype('scaling','slopebias','slope', 2^2, 'bias', 0)
T =
            DataTypeMode: Fixed-point: slope and bias scaling
            Signed: true
        WordLength: 16
            Slope: 2^2
            Bias: 0
c = fi(pi, T)
c =
```

 DataTypeMode: Fixed-point: slope and bias scaling
 Signed: true
 WordLength: 16
 Slope: 2^2
 Bias: O
 RoundMode: nearest
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
 d = fi(pi/2, T)
d =
0
DataTypeMode: Fixed-point: slope and bias scaling
Signed: true
WordLength: 16
Slope: 2^2
Bias: 0
RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: }12
CastBeforeSum: true

```

\section*{numerictype Object Functions}

The following functions operate directly on numerictype objects:
- divide
- isequal
- isnumerictype

You can learn about the functions associated with numerictype objects in the Function Reference.

\section*{7}

\section*{Working with quantizer Objects}
\begin{tabular}{ll} 
Constructing quantizer Objects & \begin{tabular}{l} 
Explains how to create quantizer \\
(p. 7-2)
\end{tabular} \\
quantizects. Object Properties (p. 7-4) & \begin{tabular}{l} 
Outlines the properties of the \\
quantizer objects
\end{tabular} \\
Quantizing Data with quantizer & \begin{tabular}{l} 
Discusses using quantizer objects \\
to quantize data -how and what
\end{tabular} \\
Objects (p. 7-5) & \begin{tabular}{l} 
quantizing data does
\end{tabular} \\
Transformations for Quantized Data & \begin{tabular}{l} 
Offers a brief explanation of \\
transforming quantized data
\end{tabular} \\
(p. 7-7) & \begin{tabular}{l} 
between representations
\end{tabular} \\
quantizer Object Functions (p. 7-8) & \begin{tabular}{l} 
Introduces the functions in the \\
toolbox that operate directly on
\end{tabular} \\
& quantizer objects
\end{tabular}

\section*{Constructing quantizer Objects}

You can use quantizer objects to quantize data sets before you pass them to fi objects. You can create quantizer objects in the Fixed-Point Toolbox in one of two ways:
- You can use the quantizer constructor function to create a new object.
- You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type
```

q = quantizer
q =
DataMode = fixed
RoundMode = floor
OverflowMode = saturate
Format = [16 15]
Max = reset
Min = reset
NOverflows = 0
NUnderflows = 0
NOperations = 0

```

To copy a quantizer object, simply use assignment as in the following example:
```

q = quantizer;
r = q;
isequal(q,r)
ans =

A listing of all the properties of the quantizer object q you just created is displayed along with the associated property values. All property values
are set to defaults when you construct a quantizer object this way. See "quantizer Object Properties" on page 7-4 for more details.

quantizer Object Properties

The following properties of quantizer objects are always writable:

- DataMode - Type of arithmetic used in quantization
- Format - Data format of a quantizer object
- OverflowMode - Overflow-handling mode
- RoundMode - Rounding mode

See Chapter 9, "Property Reference" for more details about these properties, including their possible values.

For example, to create a fixed-point quantizer object with

- The Format property value set to [16,14]
- The OverflowMode property value set to 'saturate'
- The RoundMode property value set to 'ceil'
type
$q=$
quantizer('datamode','fixed','format',[16,14],'overflowmode',... 'saturate', 'roundmode', 'ceil')

You do not have to include quantizer object property names when you set quantizer object property values.

For example, you can create quantizer object q from the previous example by typing

```
q = quantizer('fixed',[16,14],'saturate','ceil')
```

Note You do not have to include default property values when you construct a quantizer object. In this example, you could leave out 'fixed ' and 'saturate'.

Quantizing Data with quantizer Objects

You construct a quantizer object to specify the quantization parameters to use when you quantize data sets. You can use the quantize function to quantize data according to a quantizer object's specifications.

Once you quantize data with a quantizer object, its state values might change.

The following example shows

- How you use quantize to quantize data
- How quantization affects quantizer object states
- How you reset quantizer object states to their default values using reset

1 Construct an example data set and a quantizer object.

```
randn('state',0);
x = randn(100,4);
q = quantizer([16,14]);
```

2 Retrieve the values of the max and noverflows states.

```
q.max
ans =
reset
q.noverflows
ans =
    0
```

3 Quantize the data set according to the quantizer object's specifications.

```
y = quantize(q,x);
```

4 Check the values of max and noverflows.
q. \max

```
ans =
2.3726
q.noverflows
ans =
    1 5
```

5 Reset the quantizer states and check them.

```
reset(q)
q.max
ans =
reset
q.noverflows
ans =
    0
```


Transformations for Quantized Data

You can convert data values from numeric to hexadecimal or binary according to a quantizer object's specifications.

Use

- num2bin to convert data to binary
- num2hex to convert data to hexadecimal
- hex2num to convert hexadecimal data to numeric
- bin2num to convert binary data to numeric

For example,

$$
\begin{gathered}
q=q u a n t i z e r([32]) ; \\
x=\left[\begin{array}{ll}
0.75 & -0.25 \\
0.50 & -0.50 \\
0.25 & -0.75 \\
0 & -1
\end{array}\right] ; \\
b=\operatorname{num} 2 b i n(q, x)
\end{gathered}
$$

b $=$

011
010
001
000
111
110
101
100
produces all two's complement fractional representations of 3-bit fixed-point numbers.

quantizer Object Functions

The functions in the table below operate directly on quantizer objects

bin2num	copyobj	denormalmax	denormalmin	disp
eps	exponentbias	exponentlength	exponentmax	exponentmin
fractionlength	get	hex2num	isequal	length
max	min	noperations	noverflows	num2bin
num2hex	num2int	nunderflows	quantize	quantizer
randquant	range	realmax	realmin	reset
round	set	tostring	wordlength	

You can learn about the functions associated with quantizer objects in the Function Reference.

Interoperability with Other Products

Using fi Objects with Simulink (p. 8-2)
Using fi Objects with Signal Processing Blockset (p. 8-7)
Using the Fixed-Point Toolbox with Embedded MATLAB (p. 8-11)
Using fi Objects with Filter Design
Toolbox (p. 8-29)

Describes how to pass fixed-point data back and forth between the MATLAB workspace and Simulink models using Simulink blocks

Describes how to pass fixed-point data back and forth between the MATLAB workspace and Simulink models using Signal Processing Blockset blocks

Discusses the use of Fixed-Point Toolbox with Embedded MATLAB, including supported functions and limitations

Provides a brief description of how to use fi objects with dfilt objects in the Filter Design Toolbox

Using fi Objects with Simulink

Fixed-Point Toolbox fi objects can be used to pass fixed-point data back and forth between the MATLAB workspace and Simulink models.

Reading Fixed-Point Data from the Workspace

You can read fixed-point data from the MATLAB workspace into a Simulink model via the From Workspace block. To do so, the data must be in structure format with a fi object in the values field. In array format, the From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace block must not be selected, and the Form output after final data value by parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace

You can write fixed-point output from a model to the MATLAB workspace via the To Workspace block in either array or structure format. Fixed-point data written by a To Workspace block to the workspace in structure format can be read back into a Simulink model in structure format by a From Workspace block.

Note To write fixed-point data to the MATLAB workspace as a fi object, select the Log fixed-point data as a fi object check box on the To Workspace block dialog. Otherwise, fixed-point data is converted to double and written to the workspace as double.

For example, you can use the following code to create a structure in the MATLAB workspace with a fi object in the values field. You can then use the From Workspace block to bring the data into a Simulink model.

```
a = fi([sin(0:10)' sin(10:-1:0)'])
a =
```

 \(0 \quad-0.5440\)
    ```
        0.8415 0.4121
        0.9093 0.9893
        0.1411 0.6570
        -0.7568 -0.2794
        -0.9589 -0.9589
        -0.2794 -0.7568
        0.6570 0.1411
        0.9893 0.9093
        0.4121 0.8415
        -0.5440 0
            DataTypeMode: Fixed-point: binary point scaling
            Signed: true
                WordLength: 16
            FractionLength: 15
                RoundMode: nearest
                OverflowMode: saturate
                ProductMode: FullPrecision
    MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
s.signals.values = a
S =
    signals: [1x1 struct]
s.signals.dimensions = 2
S =
    signals: [1x1 struct]
s.time = [0:10]'
S =
```

```
signals: [1x1 struct]
    time: [11x1 double]
```

The From Workspace block in the following model has the fi structure s in the Data parameter.

Remember, to write fixed-point data to the MATLAB workspace as a fi object, select the Log fixed-point data as a fi object check box on the To Workspace block dialog. Otherwise, fixed-point data is converted to double and written to the workspace as double.

In the model, the following parameters in the Solver pane of the Configuration Parameters dialog have the indicated settings:

- Start time - 0.0
- Stop time - 10.0
- Type - Fixed-step
- Solver-discrete (no continuous states)
- Fixed step size (fundamental sample time) - 1.0

The To Workspace block writes the result of the simulation to the MATLAB workspace as a fi structure.

```
simout.signals.values
ans =
    0 -8.7041
    13.4634 6.5938
    14.5488 15.8296
    2.2578 10.5117
    -12.1089 -4.4707
    -15.3428 -15.3428
    -4.4707 -12.1089
    10.5117 2.2578
    15.8296 14.5488
    6.5938 13.4634
    -8.7041 0
```

```
DataTypeMode: Fixed-point: binary point scaling
                        Signed: true
            WordLength: 32
        FractionLength: 25
            RoundMode: nearest
        OverflowMode: saturate
        ProductMode: FullPrecision
        MaxProductWordLength: 128
        SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```


Logging Fixed-Point Signals

When fixed-point signals are logged to the MATLAB workspace via signal logging, they are always logged as fi objects. To enable signal logging for a signal, select the Log signal data option in the signal's Signal Properties dialog box. For more information, refer to "Logging Signals" in the Using Simulink documentation.

When you log signals from a referenced model or Stateflow ${ }^{\circledR}$ chart in your model, the word lengths of fi objects may be larger than you expect. The word lengths of fixed-point signals in referenced models and Stateflow charts are logged as the next largest data storage container size.

Accessing Fixed-Point Block Data During Simulation

Simulink provides an application program interface (API) that enables programmatic access to block data, such as block inputs and outputs, parameters, states, and work vectors, while a simulation is running. You can use this interface to develop MATLAB programs capable of accessing block data while a simulation is running or to access the data from the MATLAB command line. Fixed-point signal information is returned to you via this API as fi objects. For more information on the API, refer to "Accessing Block Data During Simulation" in the Using Simulink documentation.

Using fi Objects with Signal Processing Blockset

Fixed-Point Toolbox fi objects can be used to pass fixed-point data between the MATLAB workspace and models using Signal Processing Blockset blocks.

Reading Fixed-Point Signals from the Workspace

You can read fixed-point data from the MATLAB workspace into a Simulink model using the Signal From Workspace and Triggered Signal From Workspace blocks from the Signal Processing Blockset. Enter the name of the defined fi variable in the Signal parameter of the Signal From Workspace or Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace

Fixed-point output from a model can be written to the MATLAB workspace via the Signal To Workspace or Triggered To Workspace block from the Signal Processing Blockset. The fixed-point data is always written as a 2-D or 3-D array.

> Note To write fixed-point data to the MATLAB workspace as a fi object, select the Log fixed-point data as a fi object check box on the Signal To Workspace or Triggered To Workspace block dialog. Otherwise, fixed-point data is converted to double and written to the workspace as double.

For example, you can use the following code to create a fi object in the MATLAB workspace. You can then use the Signal From Workspace block to bring the data into a Simulink model.

```
a = fi([sin(0:10)' sin(10:-1:0)'])
a =
\(0 \quad-0.5440\)
    0.8415 0.4121
    0.9093 0.9893
    0.1411 0.6570
    -0.7568 -0.2794
```

| -0.9589 | -0.9589 |
| ---: | ---: |
| -0.2794 | -0.7568 |
| 0.6570 | 0.1411 |
| 0.9893 | 0.9093 |
| 0.4121 | 0.8415 |
| -0.5440 | 0 |

```
        DataTypeMode: Fixed-point: binary point scaling
            Signed: true
        WordLength: 16
        FractionLength: 15
            RoundMode: nearest
        OverflowMode: saturate
            ProductMode: FullPrecision
MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```

The Signal From Workspace block in the following model has these settings:

- Signal - a
- Sample time - 1
- Samples per frame - 2
- Form output after final data value by - Setting to zero

The following parameters in the Solver pane of the Configuration Parameters dialog have the indicated settings:

- Start time - 0.0
- Stop time - 10.0
- Type - Fixed-step
- Solver-discrete (no continuous states)
- Fixed step size (fundamental sample time) - 1.0

Remember, to write fixed-point data to the MATLAB workspace as a fi object, select the Log fixed-point data as a fi object check box on the Signal To Workspace block dialog. Otherwise, fixed-point data is converted to double and written to the workspace as double.

The Signal To Workspace block writes the result of the simulation to the MATLAB workspace as a fi object.

```
yout =
(:,:,1) =
    0.8415 -0.1319
    -0.8415 -0.9561
(:,:,2) =
    1.0504 1.6463
```

```
    0.7682 0.3324
(:,:,3) =
    -1.7157 -1.2383
    0.2021 0.6795
(:,:,4) =
    0.3776 -0.6157
    -0.9364 -0.8979
(:,:,5) =
    1.4015 1.7508
    0.5772 0.0678
(:,:,6) =
    -0.5440 0
    -0.5440 0
```

 DataTypeMode: Fixed-point: binary point scaling
 Signed: true
 WordLength: 17
 FractionLength: 15
 RoundMode: nearest
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Using the Fixed-Point Toolbox with Embedded MATLAB

The Embedded MATLAB Function block lets you compose a MATLAB language function in a Simulink model that generates embeddable code. When you simulate the model or generate code for a target environment, a function in an Embedded MATLAB Function block generates efficient C code. This code meets the strict memory and data type requirements of embedded target environments. In this way, Embedded MATLAB Function blocks bring the power of MATLAB for the embedded environment into Simulink.

For more information on using Embedded MATLAB, refer to the following sections in the Simulink documentation:

- Embedded MATLAB Function block reference page
- "Using the Embedded MATLAB Function Block"
- "Embedded MATLAB Function Block Reference"

Supported Functions and Limitations of Fixed-Point Embedded MATLAB

You can use a significant subset of Fixed-Point Toolbox functions with Embedded MATLAB. The Fixed-Point Toolbox functions supported for use with Embedded MATLAB are listed in the table below. The following general limitations always apply to the use of the Fixed-Point Toolbox with Embedded MATLAB:

- Dot notation is not supported
- Word lengths larger than 32 bits are not supported
- It is illegal to change the fimath or numerictype of a given variable once it has been created
- The double, single, and boolean values of the DataTypeMode and DataType properties are not supported
- convergent rounding is not supported
- The numel function works the same as MATLAB numel for fi objects in Embedded MATLAB, rather than returning 1 as in the Fixed-Point Toolbox

To learn about the general limitations on the use of Embedded MATLAB that also apply to use with the Fixed-Point Toolbox, refer to "Unsupported MATLAB Features and Limitations" in the Simulink documentation.

Note To simulate models using fixed-point data types in Simulink, you must have a Simulink Fixed Point licence.

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB

| Function | Remarks/Limitations |
| :--- | :--- |
| abs | - |
| all | - |
| any | - |
| complex | - |
| conj | - |
| ctranspose | - |
| disp | - Any non-fi input must be constant; that is, its value must be known
 at compile time so that it can be cast to a fi object |
| divide | - Complex and imaginary divisors are not supported |
| double | - |
| end | - |
| eps | - Not supported for fixed-point signals with different biases |
| eq | |

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB (Continued)

| Function | Remarks/Limitations |
| :---: | :---: |
| fi | - Use to create a fixed-point constant or variable in Embedded MATLAB
 - The syntax fi('PropertyName',PropertyValue...) is not supported. To use property name/property value pairs, you must first specify the value v of the fi object as in fi(v,'PropertyName', PropertyValue...)
 - Works for constant input values only; that is, the value of the input must be known at compile time
 - numerictype object information must be available for nonfixed-point Simulink inputs |
| fimath | - Fixed-point signals coming in to an Embedded MATLAB Function block from Simulink are assigned the fimath object defined in the Embedded MATLAB Function dialog in the Model Explorer
 - Use to create fimath objects in Embedded MATLAB code |
| ge | - Not supported for fixed-point signals with different biases |
| gt | - Not supported for fixed-point signals with different biases |
| horzcat | - |
| imag | - |
| int8, int16, int32 | - |
| iscolumn | - |
| isempty | - |
| isfi | - |
| isfimath | - |
| isfinite | - |
| isinf | - |
| isnan | - |
| isnumeric | - |

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB (Continued)

| Function | Remarks/Limitations |
| :--- | :--- |
| isnumerictype | - |
| isreal | - |
| isrow | - |
| isscalar | - |
| issigned | - |
| isvector | - |
| le | - |
| length | - |
| logical | - Not supported for fixed-point signals with different biases |
| lowerbound | - Supported for 1-D and 2-D arrays only |
| lsb | - Supported for 1-D and 2-D arrays only |
| lt | - Any non-fi input must be constant; that is, its value must be known |
| at compile time so that it can be cast to a fi object | |

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB (Continued)

| Function | Remarks/Limitations |
| :--- | :--- |
| plus | • Any non-fi input must be constant; that is, its value must be known
 at compile time so that it can be cast to a fi object |
| pow2 | - For the syntax pow2 (a, K), K must be a constant; that is, its value
 must be known at compile time so that it can be cast to a fi object |
| range | - |
| real | - |
| realmax | - |
| realmin | - |
| repmat | - |
| reshape | - |
| sign | - |
| single | - |
| size | - |
| subsasgn | - Supported for 1-D and 2-D arrays only for 1-D and 2-D arrays only |
| subsref | at compile time so that it can be cast to a fi object |
| sum | - |
| times | - |
| transpose | - |
| uint8, uint16, uint32 | - |
| uminus | - |
| uplus | |

Fixed-Point Toolbox Functions Supported for Use with Embedded MATLAB (Continued)

| Function | Remarks/Limitations |
| :--- | :--- |
| upperbound | - |
| vertcat | - |

Using the Model Explorer with Fixed-Point Embedded MATLAB

You can specify parameters for an Embedded MATLAB Function block in a fixed-point model using the Model Explorer. Try the following:

1 Type emlnew at the MATLAB command line to open a new Simulink model populated with an Embedded MATLAB Function block.

2 Open the Model Explorer by selecting View > Model Explorer from your model.

3 Expand the untitled* node in the Model Hierarchy pane of the Model Explorer and select the Embedded MATLAB Function node. The Model Explorer now appears as follows:

The parameters in the Simulink input signal properties group box in the Dialog pane apply to Embedded MATLAB Function blocks in models that use fixed-point data types.

FIMATH for fixed-point input signals

Define the fimath object to be associated with Simulink fixed-point or integer signals entering the Embedded MATLAB Function block as inputs. You can do this in either of two ways:

- Fully define the fimath object in the parameter value box using Fixed-Point Toolbox MATLAB code.
- Enter a variable name of a fimath object that is defined in the MATLAB or model workspace.

The default fimath object entered for this parameter emulates C-style math.

Treat inherited integer signals as

Choose whether to treat inherited integer signals as integers or fixed-point data.

- If you select Integer, Simulink integer inputs to the Embedded MATLAB Function block will be treated as MATLAB integers.
- If you select Fixed-point, Simulink integer inputs to the Embedded MATLAB Function block will be treated as Fixed-Point Toolbox fi objects.

Sharing Fixed-Point Embedded MATLAB Models

Sometimes you might need to share a fixed-point model using the Embedded MATLAB Function block with a coworker. When you do, make sure to move any variables you define in the MATLAB workspace, including fimath objects, to the model workspace. For example, try the following:

1 Type emlnew at the MATLAB command line to open a new Simulink model populated with an Embedded MATLAB Function block.

2 Define a fimath object in the MATLAB workspace that you want to use for any Simulink fixed-point signal entering the Embedded MATLAB Function block as an input:

```
F = fimath('RoundMode','Floor','OverflowMode','Wrap',...
    'ProductMode','KeepLSB','ProductWordLength',32,...
    'SumMode','KeepLSB','SumWordLength',32)
F =
```

 RoundMode: floor
 OverflowMode: wrap
 ProductMode: KeepLSB
 ProductWordLength: 32

SumMode: KeepLSB

SumWordLength: 32
CastBeforeSum: true

3 Open the Model Explorer by selecting View > Model Explorer from your model.

4 Expand the untitled* node in the Model Hierarchy pane of the Model Explorer and select the Embedded MATLAB Function node.

5 Enter the variable F into the FIMATH for fixed-point input signals parameter on the Dialog pane and click Apply. You have now defined the fimath object for any Simulink fixed-point signal entering the Embedded MATLAB Function as an input.

6 Select the Base Workspace node in the Model Hierarchy pane. You can see the variable F that you have defined in the MATLAB workspace listed in the Contents pane. If you were to send this model to a coworker, they would have to define that same variable in their MATLAB workspace to get the same results as you with this model.

7 Cut the variable F from the base workspace and paste it into the model workspace listed under the node for your model, in this case untitled*. The Model Explorer now looks like this:

You can now e-mail your model to a coworker, and because the variables needed to run the model are included in the workspace of the model itself, your coworker can run the model and get the correct results without performing any extra steps.

Example: Implementing a Fixed-Point Direct Form FIR Using Embedded MATLAB

This example leads you through creating a fixed-point, low-pass, direct form FIR filter in Simulink using the Fixed-Point Toolbox and Embedded MATLAB in the following sections:

- "I. Program the Embedded MATLAB Block" on page 8-21
- "II. Prepare the Inputs" on page 8-22
- "III. Create the Model" on page 8-23
- "IV. Define the Input fimath Using the Model Explorer" on page 8-26
- "V. Run the Simulation" on page 8-28

I. Program the Embedded MATLAB Block

1 Place an Embedded MATLAB Function block in a new model. The block is located in the Simulink User-Defined Functions library.

2 Save your model as eML_fi.mdl.
3 Double-click the Embedded MATLAB Function block in your model to open the Embedded MATLAB Editor. Type or copy and paste the following MATLAB code, including comments, into the Editor:

```
function [yout,zf] = dffirdemo(b, x, zi)
%eML_fi doc model example
%Initialize the output signal yout and the final conditions zf
Fy = fimath('RoundMode','Floor','OverflowMode','Wrap',...
    'ProductMode','KeepLSB','ProductWordLength',32,...
    'SumMode','KeepLSB', 'SumWordLength', 32);
Ty = numerictype(1,12,8);
yout = fi(zeros(size(x)),'numerictype',Ty,'fimath',Fy);
zf = zi;
% FIR filter code
for k=1:length(x);
    % Update the states: z = [x(k);z(1:end-1)]
    zf(:) = [x(k);zf(1:end-1)];
    % Form the output: y(k) = b*z
    yout(k) = b*zf;
end
% Plot the outputs only in simulation.
% This does not generate C code.
figure;
```

```
subplot(211);plot(x); title('Noisy Signal');grid;
subplot(212);plot(yout); title('Filtered Signal');grid;
```

The Editor should now appear as follows:

II. Prepare the Inputs

Define the filter coefficients b, noise x, and initial conditions $z i$ by typing the following at the MATLAB command line:

```
b = fi_fir_coefficients;
load mtlb
x = mtlb;
n = length(x);
noise = sin(2*pi*2140*(0:n-1)'./Fs);
x = x + noise;
zi = zeros(length(b),1);
```


III. Create the Model

1 Add blocks to your model to create the system shown below.

2 Set the block parameters in the model to the following values:

| Block | Parameter | Value |
| :--- | :--- | :--- |
| Constant | Constant value | b |
| | Interpret vector
 parameters as 1-D | unselected |
| | Sample time | inf |
| | Output data type
 mode | Specify via dialog |
| | Output data type | sfix (12) |
| | Output scaling
 mode | Use specified
 scaling |
| | Output scaling
 value | $2^{\wedge}-12$ |
| Constant1 | Constant value | x+noise |
| | Interpret vector
 parameters as 1-D | unselected |
| | Sample time | 1 |
| | Output data type
 mode | Specify via dialog |
| | Output data type | sfix(12) |
| | Output scaling
 mode | Use specified
 scaling |
| | Output scaling
 value | $2^{\wedge}-9$ |

| Block | Parameter | Value |
| :---: | :---: | :---: |
| Constant2 | Constant value | zi |
| | Interpret vector parameters as 1-D | unselected |
| | Sample time | inf |
| | Output data type mode | Specify via dialog |
| | Output data type | sfix(12) |
| | Output scaling mode | Use specified scaling |
| | Output scaling value | 2^-9 |
| Signal To Workspace | Variable name | yout |
| | Limit data points to last | inf |
| | Decimation | 1 |
| | Frames | Concatenate frames (2-D array) |
| | Log fixed-point data as a fi object | selected |
| Signal To Workspace1 | Variable name | zf |
| | Limit data points to last | inf |
| | Decimation | 1 |
| | Frames | Concatenate frames (2-D array) |
| | Log fixed-point data as a fi object | selected |

| Block | Parameter | Value |
| :--- | :--- | :--- |
| Signal To
 Workspace2 | Variable name | noisyx |
| | Limit data points to
 last | inf |
| | Decimation | 1 |
| | Frames | Concatenate frames
 $(2-D$ array $)$ |
| | Log fixed-point data
 as a fi object | selected |

IV. Define the Input fimath Using the Model Explorer

1 Define the fimath object used in your Embedded MATLAB code in the MATLAB workspace:

```
Fy = fimath('RoundMode','Floor','OverflowMode','Wrap',...
    'ProductMode','KeepLSB','ProductWordLength',32,...
    'SumMode','KeepLSB','SumWordLength',32)
Fy =
```

 RoundMode: floor
 OverflowMode: wrap
 ProductMode: KeepLSB
 ProductWordLength: 32
SumMode: KeepLSB
SumWordLength: 32
CastBeforeSum: true

2 Open the Model Explorer for the model by selecting View > Model Explorer.

3 Click the Base Workspace node in the Model Hierarchy pane of the Model Explorer. You see the fimath Fy you just defined listed in the Contents pane.

4 Click the eML_f > Embedded MATLAB Function node in the Model Hierarchy pane. The dialog for the Embedded MATLAB Function block appears in the Dialog pane of the Model Explorer.

5 Enter Fy in the FIMATH for fixed-point input signals parameter on the Embedded MATLAB Function dialog in the Dialog pane of the Model Explorer and click Apply. This step sets the fimath object for the three inputs entering into the Embedded MATLAB Function block in your model. The Model Explorer now appears as follows:

V. Run the Simulation

1 You can now run the simulation by selecting your model and typing Ctrl+T. While the simulation is running, information will output to the MATLAB command line. You can look at the plots of the noisy signal and the filtered signal.

2 Now build your Embedded MATLAB code by selecting your model and typing $\mathbf{C t r l} \mathbf{+ B}$. While the code is building, information will output to the MATLAB command line. A directory called eML_fi_grt_rtw will be created in your current working directory.

3 Navigate to eML_fi_grt_rtw > eML_fi.c. In this file you can see the code that has been generated from your model. Search on the comment in your code
\%eML_fi doc model example
This brings you to the beginning of the section of the code that is generated from your Embedded MATLAB Function block.

Using fi Objects with Filter Design Toolbox

When the Arithmetic property is set to 'fixed', you can use an existing fi object as the input, states, or coefficients of a dfilt object in the Filter Design Toolbox. Also, fixed-point filters in the Filter Design Toolbox return fi objects as outputs. Refer to the Filter Design Toolbox documentation for more information.

8 Interoperability with Other Products

Property Reference

fi Object Properties (p. 9-2)
fimath Object Properties (p. 9-5)
fipref Object Properties (p. 9-10)
numerictype Object Properties (p. 9-12)
quantizer Object Properties (p. 9-16)

Defines the fi object properties
Defines the fimath object properties
Defines the fipref object properties
Defines the numerictype object properties

Defines the quantizer object properties

fi Object Properties

The properties associated with fi objects are described in the following sections in alphabetical order.

Note The fimath properties and numerictype properties are also properties of the fi object. Refer to "fimath Object Properties" on page 9-5 and "numerictype Object Properties" on page 9-12 for more information.

bin

Stored integer value of a fi object in binary.

data

Numerical real-world value of a fi object

dec

Stored integer value of a fi object in decimal.

double

Real-world value of a fi object stored as a MATLAB double.

fimath

fimath object associated with a fi object. The default fimath object has the following settings:

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

To learn more about fimath properties, refer to "fimath Object Properties" on page 9-5.

hex

Stored integer value of a fi object in hexadecimal.

int

Stored integer value of a fi object, stored in a built-in MATLAB integer data type. You can also use int8, int16, int32, uint8, uint16, and uint32 to get the stored integer value of a fi object in these formats.

NumericType

Structure containing all the data type and scaling attributes of a fi object. The numerictype object acts the same way as any MATLAB structure, except that it only lets you set valid values for defined fields. The following table shows the possible settings of each field of the structure that are valid for fi objects.

| DataTypeMode | Data-
 Type | Scaling | Signed | Word-
 Length | Fraction-
 Length | Slope | Bias |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fully specified fixed-point data types

| Fixed-point:
 binary point
 scaling | fixed | BinaryPoint | $1 / 0$ | w | f | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fixed-point:
 slope and bias
 scaling | fixed | SlopeBias | $1 / 0$ | w | N/A | s | b |

Partially specified fixed-point data type

| Fixed-point: unspecified scaling | fixed | Unspecified | 1/0 | w | N/A | N/A | N/A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Built-in data types | | | | | | | |
| double | double | N/A | 1 | 64 | 0 | 1 | 0 |

| DataTypeMode | Data-
 Type | Scaling | Signed | Word-
 Length | Fraction-
 Length | Slope | Bias |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| single | single | N/A | 1 | 32 | 0 | 1 | 0 |
| boolean | boolean | N/A | 0 | 1 | 0 | 1 | 0 |
| int8 | fixed | BinaryPoint | 1 | 8 | 0 | 1 | 0 |
| int16 | fixed | BinaryPoint | 1 | 16 | 0 | 1 | 0 |
| int32 | fixed | BinaryPoint | 1 | 32 | 0 | 1 | 0 |
| uint8 | fixed | BinaryPoint | 0 | 8 | 0 | 1 | 0 |
| uint16 | fixed | BinaryPoint | 0 | 16 | 0 | 1 | 0 |
| uint32 | fixed | BinaryPoint | 0 | 32 | 0 | 1 | 0 |

You cannot change the numerictype properties of a fi object after fi object creation.

Oct

Stored integer value of a fi object in octal.

fimath Object Properties

The properties associated with fimath objects are described in the following sections in alphabetical order.

CastBeforeSum

Whether both operands are cast to the sum data type before addition. Possible values of this property are 1 (cast before sum) and 0 (do not cast before sum).

The default value of this property is 1 (true).

MaxProductWordLength

Maximum allowable word length for the product data type.
The default value of this property is 128.

MaxSumWordLength

Maximum allowable word length for the sum data type.
The default value of this property is 128.

OverflowMode

Overflow-handling mode. The value of the OverflowMode property can be one of the following strings.

- saturate - Saturate to maximum or minimum value of the fixed-point range on overflow.
- wrap - Wrap on overflow. This mode is also known as two's complement overflow.

The default value of this property is saturate.

ProductFractionLength

Fraction length, in bits, of the product data type. This value can be any positive or negative integer. The product data type defines the data type of the result of a multiplication of two fi objects.

The default value of this property is automatically set to the best precision possible based on the value of the product word length.

ProductMode

Defines how the product data type is determined. In the following descriptions, let A and B be real operands, with [word length, fraction length] pairs [$W_{\mathrm{a}} F_{\mathrm{a}}$] and [$W_{\mathrm{b}} F_{\mathrm{b}}$], respectively. W_{p} is the product data type word length and F_{p} is the product data type fraction length.

- FullPrecision - The full precision of the result is kept. An error is generated if the calculated word length is greater than MaxProductWordLength.

$$
\begin{aligned}
& W_{p}=W_{a}+W_{b} \\
& F_{p}=F_{a}+F_{b}
\end{aligned}
$$

- KeepLSB - (keep least significant bits) You specify the product data type word length, while the fraction length is set to maintain the least significant bits of the product. In this mode, full precision is kept, but overflow is possible. This behavior models the C language integer operations.

$$
\begin{aligned}
& W_{p}=\text { specified in the ProductWordLength property } \\
& F_{p}=F_{a}+F_{b}
\end{aligned}
$$

- KeepMSB - (keep most significant bits) You specify the product data type word length, while the fraction length is set to maintain the most significant bits of the product. In this mode, overflow is prevented, but precision may be lost.

$$
W_{p}=\text { specified in the ProductWordLength property }
$$

$$
F_{p}=W_{p} \text { - integer length }
$$

where

$$
\text { integer length }=\left(W_{a}+W_{b}\right)-\left(F_{a}+F_{b}\right)
$$

- SpecifyPrecision - You specify both the word length and fraction length of the product data type.
$W_{p}=$ specified in the ProductWordLength property
$F_{p}=$ specified in the ProductFractionLength property
The default value of this property is FullPrecision.

ProductWordLength

Word length, in bits, of the product data type. This value must be a positive integer. The product data type defines the data type of the result of a multiplication of two fi objects.

The default value of this property is 32 .

RoundMode

The rounding mode. The value of the RoundMode property can be one of the following strings:

- ceil - Round toward positive infinity.
- convergent - Round toward nearest. Ties round to even numbers.
- fix - Round toward zero.
- floor - Round toward negative infinity.
- nearest - Round toward nearest. Ties round to the number toward positive infinity.

The default value of this property is nearest.

SumFractionLength

The fraction length, in bits, of the sum data type. This value can be any positive or negative integer. The sum data type defines the data type of the result of a sum of two fi objects.

The default value of this property is automatically set to the best precision possible based on the sum word length.

SumMode

Defines how the sum data type is determined. In the following descriptions, let A and B be real operands, with [word length, fraction length] pairs [W_{a} $\left.F_{\mathrm{a}}\right]$ and $\left[W_{\mathrm{b}} F_{\mathrm{b}}\right.$], respectively. W_{s} is the sum data type word length and F_{s} is the sum data type fraction length.

Note In the case where there are two operands, as in $A+B$, NumberOfSummands is 2, and ceil(log2(NumberOfSummands)) = 1. In sum (A), the NumberOfSummands is size ($A, 1$).

- FullPrecision - The full precision of the result is kept. An error is generated if the calculated word length is greater than MaxSumWordLength.

$$
W_{s}=\text { integer length }+F_{s}
$$

where

$$
\begin{aligned}
& \text { integer length }=\max \left(W_{a}-F_{a}, W_{b}-F_{b}\right)+\operatorname{ceil}(\log 2(\text { NumberOfSummands })) \\
& F_{s}=\max \left(F_{a}, F_{b}\right)
\end{aligned}
$$

- KeepLSB - (keep least significant bits) You specify the sum data type word length, while the fraction length is set to maintain the least significant bits of the sum. In this mode, full precision is kept, but overflow is possible. This behavior models the C language integer operations.

$$
W_{s}=\text { specified in the SumWordLength property }
$$

$$
F_{s}=\max \left(F_{a}, F_{b}\right)
$$

- KeepMSB - (keep most significant bits) You specify the sum data type word length, while the fraction length is set to maintain the most significant bits of the sum and no more fractional bits than necessary. In this mode, overflow is prevented, but precision may be lost.

$$
\begin{aligned}
& W_{s}=\text { specified in the SumW ordLength property } \\
& F_{s}=W_{s}-\text { integer length }
\end{aligned}
$$

where

$$
\text { integer length }=\max \left(W_{a}-F_{a}, W_{b}-F_{b}\right)+\operatorname{ceil}(\log 2(\text { NumberOfSummands }))
$$

- SpecifyPrecision - You specify both the word length and fraction length of the sum data type.

$$
\begin{aligned}
& W_{s}=\text { specified in the SumWordLength property } \\
& F_{s}=\text { specified in the ProductWordLength property }
\end{aligned}
$$

The default value of this property is FullPrecision.

SumWordLength

The word length, in bits, of the sum data type. This value must be a positive integer. The sum data type defines the data type of the result of a sum of two fi objects.

The default value of this property is 32 .

fipref Object Properties

The properties associated with fipref objects are described in the following sections in alphabetical order.

FimathDisplay

Display options for the fimath attributes of a fi object

- full - Displays all of the fimath attributes of a fixed-point object
- none - None of the fimath attributes are displayed.

The default value of this property is full.

LoggingMode

Logging options for operations performed on fi objects

- off - No logging
- on - Information is logged for future operations

Overflows and underflows for assignment, plus, minus, and multiplication operations are logged as warnings when LoggingMode is set to on.

When LoggingMode is on, you can also use the following functions to log information to the MATLAB command line:

- maxlog - Returns the maximum real-world value
- minlog - Returns the minimum value
- noperations - Returns the number of quantization operations
- noverflows - Returns the number of overflows
- nunderflows - Returns the number of underflows

LoggingMode must be set to on before you perform any assignment or math operation in order to log information about that operation. To clear the log, use the function resetlog.

The default value of this property of off.

NumericTypeDisplay

Display options for the numerictype attributes of a fi object

- full - Displays all the numerictype attributes of a fixed-point object
- none - None of the numerictype attributes are displayed.
- short - Displays an abbreviated notation of the fixed-point data type and scaling of a fixed-point object in the format xWL, FL where
- x is s for signed and u for unsigned.
- WL is the word length.
- FL is the fraction length.

The default value of this property is full.

NumberDisplay

Display options for the value of a fi object

- bin - Displays the stored integer value in binary format
- dec - Displays the stored integer value in unsigned decimal format
- RealWorldValue - Displays the stored integer value in the format specified by the MATLAB format function
- hex - Displays the stored integer value in hexadecimal format
- int - Displays the stored integer value in signed decimal format
- none - No value is displayed.

The default value of this property is RealWorldValue. In this mode, the value of a fi object is displayed in the format specified by the MATLAB format function: +, bank, compact, hex, long, long e, long g, loose, rat, short, short e, or short g. fi objects in rat format are displayed according to
$1 /\left(2^{\wedge}\right.$ fixed-point exponent $) \times$ stored integer

numerictype Object Properties

The properties associated with numerictype objects are described in the following sections in alphabetical order.

Bias

Bias associated with a fi object. The bias is part of the numerical representation used to interpret a fixed-point number. Along with the slope, the bias forms the scaling of the number. Fixed-point numbers can be represented as

$$
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
$$

where the slope can be expressed as

$$
\text { slope }=\text { fractionalslope } \times 2^{\text {fixed exponent }}
$$

DataType

Data type associated with a fi object. The possible value of this property are:

- boolean - Built-in MATLAB boolean data type
- double - Built-in MATLAB double data type
- fixed - Fixed-point or integer data type
- single - Built-in MATLAB single data type

The default value of this property is fixed.

DataTypeMode

Data type and scaling associated with a fi object. The possible values of this property are

- boolean - Built-in boolean
- double - Built-in double
- Fixed-point: binary point scaling - Fixed-point data type and scaling defined by the word length and fraction length
- Fixed-point: slope and bias scaling - Fixed-point data type and scaling defined by the slope and bias
- Fixed-point: unspecified scaling - A temporary setting that is only allowed at fi object creation, in order to allow for the automatic assignment of a binary point best-precision scaling
- int8 - Built-in signed 8-bit integer
- int16 - Built-in signed 16-bit integer
- int32 - Built-in signed 32 -bit integer
- single - Built-in single
- uint8 - Built-in unsigned 8-bit integer
- uint16 - Built-in unsigned 16 -bit integer
- uint32 - Built-in unsigned 32-bit integer

The default value of this property is Fixed-point: binary point scaling.

FixedExponent

Fixed-point exponent associated with a fi object. The exponent is part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as

```
real-world value = (slope }\times\mathrm{ integer })+\mathrm{ bias
```

where the slope can be expressed as

$$
\text { slope }=\text { fractionalslope } \times 2^{\text {fixed exponent }}
$$

The exponent of a fixed-point number is equal to the negative of the fraction length:

$$
\text { fixed exponent }=\text {-fraction length }
$$

FractionLength

Value of the FractionLength property is the fraction length of the stored integer value of a fi object, in bits. The fraction length can be any integer value. If you do not specify the fraction length of a fi object, it is set to the best possible precision.

This property is automatically set by default to the best precision possible based on the value of the word length.

Scaling

Fixed-point scaling mode of a fi object. The possible values of this property are

- BinaryPoint - Scaling for the fi object is defined by the fraction length.
- SlopeBias - Scaling for the fi object is defined by the slope and bias.
- Unspecified - A temporary setting that is only allowed at fi object creation, in order to allow for the automatic assignment of a binary point best precision scaling
- Integer -- The fi object is an integer; the binary point is understood to be at the far right of the word, making the fraction length zero.

The default value of this property is BinaryPoint.

Signed

Whether a fi object is signed.
The default value of this property is 1 (signed).

Slope

Slope associated with a fi object. The slope is part of the numerical representation used to express a fixed-point number. Along with the bias, the slope forms the scaling of a fixed-point number. Fixed-point numbers can be represented as

$$
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
$$

where the slope can be expressed as

```
slope = fractionalslope }\times\mp@subsup{2}{}{\mathrm{ fixed exponent}
```


SlopeAdjustmentFactor

Slope adjustment associated with a fi object. The slope adjustment is equivalent to the fractional slope of a fixed-point number. The fractional slope is part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as

```
real-world value \(=(\) slope \(\times\) integer \()+\) bias
```

where the slope can be expressed as

```
slope \(=\) fractionalslope \(\times 2^{\text {fixed exponent }}\)
```


WordLength

Value of the WordLength property is the word length of the stored integer value of a fixed-point object, in bits. The word length can be any positive integer value.

The default value of this property is 16 .

quantizer Object Properties

The properties associated with quantizer objects are described in the following sections in alphabetical order.

DataMode

Type of arithmetic used in quantization. This property can have the following values:

- fixed - Signed fixed-point calculations
- float - User-specified floating-point calculations
- double - Double-precision floating-point calculations
- single - Single-precision floating-point calculations
- ufixed - Unsigned fixed-point calculations

The default value of this property is fixed.
When you set the DataMode property value to double or single, the Format property value becomes read only.

Format

Data format of a quantizer object. The interpretation of this property value depends on the value of the DataMode property.

For example, whether you specify the DataMode property with fixed- or floating-point arithmetic affects the interpretation of the data format property. For some DataMode property values, the data format property is read only.

The following table shows you how to interpret the values for the Format property value when you specify it, or how it is specified in read-only cases.

| DataMode Property
 Value | Interpreting the Format Property Values |
| :--- | :--- |
| fixed or ufixed | You specify the Format property value as a vector. The number of
 bits for the quantizer object word length is the first entry of this
 vector, and the number of bits for the quantizer object fraction
 length is the second entry.
 The word length can range from 2 to the limits of memory on your
 PC. The fraction length can range from 0 to one less than the word
 length. |
| float | You specify the Format property value as a vector. The number of
 bits you want for the quantizer object word length is the first entry
 of this vector, and the number of bits you want for the quantizer
 object exponent length is the second entry.
 The word length can range from 2 to the limits of memory on your
 PC. The exponent length can range from 0 to 11. |
| double | The Format property value is specified automatically (is read only)
 when you set the DataMode property to double. The value is [64 11],
 specifying the word length and exponent length, respectively. |
| single | The Format property value is specified automatically (is read only)
 when you set the DataMode property to single. The value is [32 8],
 specifying the word length and exponent length, respectively. |

OverflowMode

Overflow-handling mode. The value of the OverflowMode property can be one of the following strings:

- saturate - Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers (as specified by the data format properties), these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.

- wrap - Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers (as specified by the data format
properties), these values are wrapped back into that range using modular arithmetic relative to the smallest representable number.

The default value of this property is saturate.

Note Floating-point numbers that extend beyond the dynamic range overflow to \pm inf.

The OverflowMode property value is set to saturate and becomes a read-only property when you set the value of the DataMode property to float, double, or single.

RoundMode

Rounding mode. The value of the RoundMode property can be one of the following strings:

- ceil - Round up to the next allowable quantized value.
- convergent - Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 0 .
- fix - Round negative numbers up and positive numbers down to the next allowable quantized value.
- floor - Round down to the next allowable quantized value.
- nearest - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.

The default value of this property is floor.

Functions - Categorical List

- "Bitwise Functions" on page 10-2
- "Constructor and Property Functions" on page 10-2
- "Data Manipulation Functions" on page 10-3
- "Data Type Functions" on page 10-5
- "Data Quantizing Functions" on page 10-6
- "Element-Wise Logical Operator Functions" on page 10-6
- "Math Operation Functions" on page 10-6
- "Matrix Manipulation Functions" on page 10-8
- "Plotting Functions" on page 10-9
- "Radix Conversion Functions" on page 10-12
- "Relational Operator Functions" on page 10-13
- "Statistics Functions" on page 10-14
- "Subscripted Assignment and Reference Functions" on page 10-15
- "fi Object Functions" on page 10-16
- "fimath Object Functions" on page 10-18
- "fipref Object Functions" on page 10-19
- "numerictype Object Functions" on page 10-20
- "quantizer Object Functions" on page 10-21

Bitwise Functions

| bitand | Return the bitwise AND of two fi
 objects |
| :--- | :--- |
| bitcmp | Return the bitwise complement of a
 fi object |
| bitget | Return the bit at a certain position
 bitor |
| Return the bitwise OR of two fi
 objects | |
| bitset | Set the bit at a certain position
 bitshift
 bitxor |
| | Shift bits specified number of places
 Return the bitwise exclusive OR of
 two fi objects |

Constructor and Property Functions

| copyobj | Make an independent copy of a
 quantizer object |
| :--- | :--- |
| fi | Construct a fi object |
| fimath | Construct a fimath object |
| fipref | Construct a fipref object |
| get | Return the property values of a
 quantizer object |
| inspect | Display Property Inspector
 numerictype
 quantizer
 reset |
| Construct a numerictype object | |
| savefipref | Construct a quantizer object
 Reset one or more objects to their
 initial conditions |
| | Save fi preferences for the next
 MATLAB session |

```
set
stripscaling
tostring
```


Data Manipulation Functions

| denormalmax | Return the largest denormalized
 quantized number for a quantizer
 object |
| :--- | :--- |
| denormalmin | Return the smallest denormalized
 quantized number for a quantizer
 object |
| eps | Return the quantized relative
 accuracy for fi objects or quantizer
 objects |
| exponentbias | Return the exponent bias for a
 quantizer object |
| exponentlength | Return the exponent length of a
 quantizer object |
| exponentmax | Return the maximum exponent for a
 quantizer object |
| exponentmin | Return the minimum exponent for a
 quantizer object |
| fractionlength | Return the fraction length of a
 quantizer object |

| isequal | Determine whether the real-world
 values of two fi objects are equal,
 or determine whether the properties
 of two fimath, numerictype, or
 quantizer objects are equal |
| :--- | :--- |
| isfi | Determine whether a variable is a
 fi object |
| isfimath | Determine whether a variable is a
 fimath object |
| isnumerictype | Determine whether a variable is a
 numerictype object |
| ispropequal | Determine whether the properties of
 two fi objects are equal |
| issigned | Determine whether a fi object is
 signed |
| lowerbound | Return lower bound of range of fi
 object |
| lsb | Return the scaling of the least
 significant bit of a fi object |
| range | Return the numerical range of a fi
 object or quantizer object |
| realmax | Return the largest positive
 fixed-point value or quantized
 number |
| realmin | Return the smallest positive
 normalized fixed-point value or
 quantized number |
| rescale | Change the scaling of a fi object |
| upperbound | Return upper bound of range of fi
 object
 Return the word length of a
 quantizer object |

Data Type Functions

| double | Return the double-precision
 floating-point real-world value of a
 fi object |
| :--- | :--- |
| int | Return the smallest built-in integer
 in which the stored integer value of
 a fi object will fit |
| int16 | Return the stored integer value of a
 fi object as a built-in int16 |
| int32 | Return the stored integer value of a
 fi object as a built-in int32 |
| int8 | Return the stored integer value of a
 fi object as a built-in int8 |
| intmax | Return the largest positive stored
 integer value representable by the
 numerictype a fi object |
| intmin | Return smallest stored integer value
 representable by numerictype of fi
 object |
| logical | Convert numeric values to logical |
| single | Return the single-precision
 floating-point real-world value of a
 fi object |
| uint16 | Return the stored integer value of a
 fi object as a built-in uint16 |
| uint32 | Return the stored integer value of a
 fi object as a built-in uint32 |
| uint8 | Return the stored integer value of a
 fi object as a built-in uint8 |
| | |

Data Quantizing Functions

| convergent | Apply convergent rounding |
| :--- | :--- |
| quantize | Apply a quantizer object to data |
| randquant | Generate a uniformly distributed,
 quantized random number using a
 quantizer object |
| round | Round input data using a quantizer
 object without checking for overflow |

Element-Wise Logical Operator Functions

```
all
and
any
not
or
```


Math Operation Functions

abs
add

Determine if all array elements are nonzero
Find logical AND of array or scalar inputs

Determine if any array elements are nonzero

Find logical NOT of array or scalar input

Find logical OR of array or scalar inputs

Return the absolute value of a fi object
Add two objects using a fimath object

| complex | Construct a complex fi object from real and imaginary parts |
| :---: | :---: |
| con ${ }^{\text {j }}$ | Return the complex conjugate of a fi object |
| divide | Divide two objects using a numerictype object |
| imag | Return the imaginary part |
| innerprodintbits | Return the number of integer bits needed for a fixed-point inner product |
| minus | Return the matrix difference between fi objects |
| mpy | Multiply two objects using a fimath object |
| mtimes | Return the matrix product of fi objects |
| plus | Return the matrix sum of fi objects |
| pow2 | Multiply by a power of 2 |
| real | Return real part of complex number |
| sign | Perform signum function on array |
| sub | Subtract two objects using a fimath object |
| sum | Return sum of array elements |
| times | Return the result of element-by-element multiplication of fi objects |
| uminus | Negate the elements of a fi object array |
| uplus | Unary plus |

Matrix Manipulation Functions

Buffer signal vector into matrix of data frames

Return the complex conjugate transpose of a fi object

Return diagonal matrices or the diagonals of a matrix

Display an object
Indicate last index of array
Return a Hankel matrix
Horizontally concatenate two or more fi objects
Inverse permute the dimensions of a multidimensional array
Determine whether a fi object is a column vector

Determine if array is empty
Determine if array elements are finite

Determine if array elements are infinite

Determine if array elements are NaN

Determine if input is numeric array
Determine if input is MATLAB OOPS object

Determine if array elements are real
Determine whether a fi object is a row vector

Determine if input is scalar

| isvector | Determine if input is vector | | |
|---|---|---|---|
| length | Return the length of a vector |
| ndims | Return number of array dimensions |
| permute | Rearrange the dimensions of a
 multidimensional array |
| repmat | Replicate and tile an array |
| reshape | Reshape array |
| size | Return array dimensions |
| squeeze | Remove singleton dimensions |
| toeplitz | Create Toeplitz matrix |
| transpose | Return the transpose
 tril |
| Return the lower triangular part of | |
| a matrix | |\quad| Vertically concatenate two or more |
| :--- |
| fi objects |

Plotting Functions

| area | Create a filled area 2-D plot |
| :--- | :--- |
| bar | Create a vertical bar graph |
| barh | Create a horizontal bar graph |
| clabel | Create contour plot elevation labels |
| comet | Create a 2-D comet plot |
| comet3 | Create a 3-D comet plot |
| compass | Plot arrows emanating from the
 origin |
| coneplot | Plot velocity vectors as cones in a |
| | 3-D vector field |

| contour | | | |
|---|---|---|---|
| contour3 | |
| contourc | Create a contour graph of a matrix |
| contourf | Create a 3-D contour plot |
| errorbar | create a two-level contour plot
 etreeplot
 ezcontour
 ezcontourf
 ezmesh |
| Create a filled 2-D contour plot | |
| ezplot | Plot error bars along a curve |
| ezplot3 | Plot elimination tree |
| ezpolar | Easy-to-use contour plotter |
| ezsurf | Easy-to-use filled contour plotter |
| | Easy-to-use 3-D mesh plotter |
| ezsurfc | Easy-to-use function plotter |
| | Easy-to-use 3-D parametric curve |
| peather | Easy-to-use polar coordinate plotter |
| fplot | Easy-to-use 3-D colored surface |
| | plotter |
| gplot | Easy-to-use combination |
| surface/contour plotter | |\quad| Plot velocity vectors |
| :--- | :--- |

| meshz | Create mesh plot with curtain plot |
| :--- | :--- |
| patch | Create patch graphics object |
| pcolor | Create pseudocolor plot |
| plot | Create linear 2-D plot |
| plot3 | Create 3-D line plot |
| plotmatrix | Draw scatter plots |
| plotyy | Create graph with y-axes on both |
| polar | right and left sides |
| quiver | Plot polar coordinates |
| quiver3 | Create quiver or velocity plot |
| rgbplot | Create 3-D quiver or velocity plot |
| ribbon | Plot colormap |
| rose | Create ribbon plot |
| scatter | Create angle histogram |
| scatter3 | Create a scatter or bubble plot |
| semilogx | Create a 3-D scatter or bubble plot |
| semilogy | Create semilogarithmic plot with |
| | logarithmic x-axis |
| slice | Create semilogarithmic plot with |
| spy | logarithmic y-axis |
| stairs | Create volumetric slice plot |
| stem | Visualize sparsity pattern |
| stem3 | Create stairstep graph |
| streamribbon | Plot discrete sequence data |
| streamslice | Plot 3-D discrete sequence data |
| streamtube | Create a 3-D stream ribbon plot |
| | Draw streamlines in slice planes |
| Create a 3-D stream tube plot | |
| sta | |

```
surf
surfc
surfl
surfnorm
text
treeplot
trimesh
triplot
trisurf
triu
voronoi
voronoin
waterfall
xlim
ylim
```


Radix Conversion Functions

| bin | Return the binary representation of
 the stored integer of a fi object as
 a string |
| :--- | :--- |
| bin2num | Convert a two's complement
 binary string to a number using a
 quantizer object |

```
dec
hex
hex2num
num2bin
num2hex
num2int
oct
sdec
```


Relational Operator Functions

Determine whether the real-world values of two fi objects are equal

Determine whether the real-world value of one fi object is greater than or equal to another

Determine whether the real-world value of one fi object is greater than another

le \begin{tabular}{ll}

lt \& | Determine whether the real-world |
| :--- |
| value of a fi object is less than or |
| equal to another |

ne \& | Determine whether the real-world |
| :--- |
| value of a fi object is less than |
| another |

| Determine whether the real-world |
| :--- |
| values of two fi objects are not equal |

\end{tabular}

Statistics Functions

```
max
maxlog
min
minlog
noperations
noverflows
numberofelements
nunderflows
resetlog
```

Return largest element in array of fi objects

Return largest real-world value of fi object or maximum value of quantizer object before quantization

Return smallest element in array of fi objects

Return smallest real-world value of fi object or minimum value of quantizer object before quantization

Return number of operations
Return number of overflows
Return number of data elements in fi array

Return number of underflows
Clear log for a fi or quantizer object

Subscripted Assignment and Reference Functions

| subsasgn | Subscripted assignment |
| :--- | :--- |
| subsref | Subscripted reference |

fi Object Functions

The functions in the table below operate directly on fi objects.

| abs | all | and | any | area |
| :--- | :--- | :--- | :--- | :--- |
| bar | barh | bin | bitand | bitcmp |
| bitget | bitor | bitshift | bitxor | buffer |
| clabel | comj | contour | compass | complex |
| coneplot | eps | dec | contour3 | contourc |
| contourf | ezcontourf | ezmesh | errorbar | double |
| end | ezsurf | ezsurfc | etreeplot | |
| ezcontour | fplot | ge | feather | ezplot3 |
| ezpolar | hankel | imag | innerprodintbits | inspect |
| fimath | int16 | iscolumn | intmax | gplot |
| gt | isinf | isnan | histc | |
| horzcat | isreal | isrow | int | |
| int8 | le | | length | isnumeric |

| scatter | scatter3 | sdec | sign | single |
| :--- | :--- | :--- | :--- | :--- |
| size | slice | spy | stairs | stem |
| stem3 | streamribbon | streamslice | streamtube | stripscaling |
| subsasgn | subsref | sum | surf | surfc |
| surfl | surfnorm | text | times | toeplitz |
| transpose | treeplot | tril | trimesh | triplot |
| trisurf | triu | uint8 | uint16 | uint32 |
| uminus | uplus | upperbound | vertcat | voronoi |
| voronoin | waterfall | xlim | ylim | zlim |

fimath Object Functions

The following functions operate directly on fimath objects.

- add
- disp
- fimath
- isequal
- isfimath
- mpy
- sub

fipref Object Functions

The following functions operate directly on fipref objects.

- disp
- fipref
- reset
- savefipref

numerictype Object Functions

The following functions operate directly on numerictype objects.

- divide
- isequal
- isnumerictype

quantizer Object Functions

The functions in the table below operate directly on quantizer objects.

| bin2num | copyobj | denormalmax | denormalmin | disp |
| :--- | :--- | :--- | :--- | :--- |
| eps | exponentbias | exponentlength | exponentmax | exponentmin |
| fractionlength | get | hex2num | isequal | length |
| max | min | noperations | noverflows | num2bin |
| num2hex | num2int | nunderflows | quantize | quantizer |
| randquant | range | realmax | realmin | reset |
| round | set | tostring | wordlength | |

Functions - Alphabetical
List

Purpose Return the absolute value of a fi object

Syntax abs(a)

Description

Examples

The following example shows the difference between the absolute value results for the most negative value representable by a signed data type when OverflowMode is saturate or wrap.

```
P = fipref('NumericTypeDisplay','full','FimathDisplay','full');
a = fi(-128)
a =
    -128
DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
            WordLength: 16
        FractionLength: 8
            RoundMode: nearest
            OverflowMode: saturate
            ProductMode: FullPrecision
        MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
```

```
        CastBeforeSum: true
abs(a)
ans =
    127.9961
                    DataTypeMode: Fixed-point: binary point scaling
                        Signed: true
                        WordLength: 16
                    FractionLength: 8
                        RoundMode: nearest
            OverflowMode: saturate
            ProductMode: FullPrecision
    MaxProductWordLength: 128
            SumMode: FullPrecision
            MaxSumWordLength: 128
            CastBeforeSum: true
a.OverflowMode = 'wrap'
a =
    -128
DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 16
FractionLength: 8
RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
```

```
    MaxSumWordLength: 128
        CastBeforeSum: true
abs(a)
ans =
    -128
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
            WordLength: 16
        FractionLength: 8
            RoundMode: nearest
        OverflowMode: wrap
            ProductMode: FullPrecision
        MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```


Purpose Add two objects using a fimath object

Syntax
 $\mathrm{c}=\mathrm{F} . \operatorname{add}(\mathrm{a}, \mathrm{b})$

Description

$c=F$.add (a, b) adds objects a and b using fimath object F. This is helpful in cases when you want to override the fimath objects of a and b, or if the fimath objects of a and b are different.
a and b must have the same dimensions unless one is a scalar. If either a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numeric type, then the built-in object is cast to the word length of the fi object, preserving best-precision fraction length.

Examples

In this example, c is the 32 -bit sum of a and b with fraction length 16 :

```
a \(=f i(p i) ;\)
b \(=\) fi(exp(1));
F = fimath('SumMode','SpecifyPrecision','SumWordLength',
    32, 'SumFractionLength',16);
c \(=\mathrm{F} . \operatorname{add}(\mathrm{a}, \mathrm{b})\)
c =
```

5.8599

```
            DataTypeMode: Fixed-point: binary point scaling
                Signed: true
            WordLength: 32
            FractionLength: 16
            RoundMode: nearest
            OverflowMode: saturate
            ProductMode: FullPrecision
MaxProductWordLength: 128
            SumMode: SpecifyPrecision
```

SumWordLength:

32

SumFractionLength: 16
CastBeforeSum: true

```
Algorithm \(\quad c=F \cdot \operatorname{add}(a, b)\) is equivalent to
    a.fimath \(=F\);
    b.fimath \(=F\);
    \(c=a+b ;\)
```

except that the fimath properties of a and b are not modified when you use the functional form.

See Also
divide, fi, fimath, mpy, numerictype, sub, sum
Purpose Determine if all array elements are nonzero
Description Refer to the MATLAB all reference page for more information.

Purpose Find logical AND of array or scalar inputs
Description Refer to the MATLAB and reference page for more information.

| Purpose | Determine if any array elements are nonzero |
| :--- | :--- |
| Description | Refer to the MATLAB any reference page for more information. |

Purpose Create a filled area 2-D plot
Description Refer to the MATLAB area reference page for more information.

Purpose Create a vertical bar graph
Description Refer to the MATLAB bar reference page for more information.

Purpose Create a horizontal bar graph
Description Refer to the MATLAB barh reference page for more information.

Purpose

Syntax

Description

Examples

The following code

```
    a = fi([-1 1],1,8,7);
    bin(a)
returns
    10000000 01111111
```

See Also
dec, hex, int, oct

bin2num

| Purpose | Convert a two's complement binary string to a number using a
 quantizer object |
| :--- | :--- |
| Syntax | $y=$ bin2num (q, b) |
| Description | $y=$ bin2num (q, b) uses the properties of quantizer object q to
 convert binary string b to numeric array y. When b is a cell array
 containing binary strings, y is a cell array of the same dimension
 containing numeric arrays. The fixed-point binary representation is
 two's complement. The floating-point binary representation is in IEEE
 Standard 754 style. |
| Examples | bin2num and num2bin are inverses of one another. Note that num2bin
 always returns the strings in a column. |
| Create a quantizer object and an array of numeric strings. Convert
 the numeric strings to binary strings, then use bin2num to convert them
 back to numeric strings. | |

q=quantizer ([4 4]);
[a,b]=range(q);
$x=(b:-\operatorname{eps}(q): a)^{\prime}$;
$b=\operatorname{num2bin}(q, x)$
$\mathrm{b}=$
0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101

1100
1011
1010
1001
1000
bin2num performs the inverse operation of num2bin.
$y=b i n 2 n u m(a, b)$
$y=$
0.8750
0.7500
0.6250
0.5000
0.3750
0.2500
0.1250

0
-0.1250
-0.2500
-0.3750
-0. 5000

- 0.6250
-0.7500
- 0.8750
-1. 0000
See Also
hex2num, num2bin, num2hex, num2int
Purpose Return the bitwise AND of two fi objects
Syntax $c=$ bitand (a, b)Description $\quad c=b i t a n d(a, b)$ returns the bitwise AND of fi objects a and b. Thenumerictype of a and b must be identical. If the numerictype is signed,then the bit representation of the stored integer is in two's complementrepresentation.bitand only supports fi objects with fixed-point data types.
See Also bitcmp, bitget, bitor, bitset, bitxor

Purpose Return the bitwise complement of a fi object

Syntax
 c = bitcmp(a)

Description $\quad c=\operatorname{bitcmp}(a)$ returns the bitwise complement of fi object a as an n-bit nonnegative integer. If a has a signed numerictype, then the bit representation of the stored integer is in two's complement representation.
bitcmp only supports fi objects with fixed-point data types.
See Also
bitand, bitget, bitor, bitset, bitxor

bitget

| Purpose | Return the bit at a certain position |
| :--- | :--- |
| Syntax | c = bitget (a, bit) |
| Description | $\mathrm{c}=$ = bitget (a, bit) returns the value of the bit at position bit in a. a
 must be a nonnegative integer, and bit must be a number between 1
 and the number of bits in the floating-point integer representation of a.
 If a has a signed numerictype, then the bit representation of the stored
 integer is in two's complement representation. |
| See Also | bitget only supports fi objects with fixed-point data types. |
| bitand, bitcmp, bitor, bitset, bitxor | |

Purpose Return the bitwise OR of two fi objects
Syntax $\quad c=\operatorname{bitor}(a, b)$
Description
$c=\operatorname{bitor}(a, b)$ returns the bitwise OR of fi objects a and b. The numerictype of a and b must be identical. If the numerictype is signed, then the bit representation of the stored integer is in two's complement representation.
bitor only supports fi objects with fixed-point data types.
See Also bitand, bitcmp, bitget, bitset, bitxor

Purpose Set the bit at a certain position

$$
\text { Syntax } \quad \begin{array}{ll}
c=\operatorname{bitset}(a, \text { bit }) \\
& c=\operatorname{bitset}(a, b i t, v)
\end{array}
$$

$c=$ bitset (a, bit) sets bit position bit in a to 1 (on).
$\mathrm{c}=$ bitset(a, bit, v) sets bit position bit in a to v . v must be either 0 (off) or 1 (on).
a must be a nonnegative integer, and bit must be a number between 1 and the number of bits in the floating-point integer representation of a. If a has a signed numerictype, then the bit representation of the stored integer is in two's complement representation.
bitset only supports fi objects with fixed-point data types.

See Also
bitand, bitcmp, bitget, bitor, bitxor

Purpose Shift bits specified number of places
Syntax c = bitshift(a, k)

Description
$c=$ bitshift (a, k) returns the value of a shifted by kits.
fi object a can be any fixed-point numeric type. The OverflowMode and RoundMode properties are obeyed.
bitshift only supports fi objects with fixed-point data types.
See Also bitand, bitcmp, bitget, bitor, bitset, bitxor
Purpose Return the bitwise exclusive OR of two fi objects
Syntax c = bitxor(a, b)
Description $c=$ bitxor (a, b) returns the bitwise exclusive OR of fi objects a and
b. The numerictype of a and b must be identical. If the numerictypeis signed, then the bit representation of the stored integer is in two'scomplement representation.bitxor only supports fi objects with fixed-point data types.
See Also bitand, bitcmp, bitget, bitor, bitset

Purpose Buffer signal vector into matrix of data frames
Description Refer to the Signal Processing Toolbox buffer reference page for more information.
Purpose Create contour plot elevation labelsDescription Refer to the MATLAB clabel reference page for more information.

Purpose \quad Create a $2-$ D comet plot

Description Refer to the MATLAB comet reference page for more information.

Purpose Create a 3-D comet plot
Description Refer to the MATLAB comet3 reference page for more information.

Purpose Plot arrows emanating from the origin

Description Refer to the MATLAB compass reference page for more information.

complex

Purpose Construct a complex fi object from real and imaginary parts
Syntax
c = complex (a,b)
c = complex(a)

Description

The complex function constructs a complex fi object from real and imaginary parts.
$c=$ complex (a, b) returns the complex result $a+b i$, where a and b are identically sized real N-D arrays, matrices, or scalars of the same data type. When b is all zero, c is complex with an all-zero imaginary part. This is in contrast to the addition of a +0 i , which returns a strictly real result.
$c=$ complex (a) for a real fi object a returns the complex result a + bi with real part a and an all-zero imaginary part. Even though its imaginary part is all zero, c is complex.
The numerictype and fimath objects of the leftmost input that is a fi object are applied to the output c.

See Also imag, real
$\begin{array}{ll}\text { Purpose } & \text { Plot velocity vectors as cones in a 3-D vector field } \\ \text { Description } & \text { Refer to the MATLAB coneplot reference page for more information. }\end{array}$

Purpose Return the complex conjugate of a $f i$ object

Syntax $\quad \operatorname{conj}(a)$

Description
$\operatorname{conj}(\mathrm{a})$ is the complex conjugate of $f i$ object a.
When a is complex,

$$
\operatorname{conj}(a)=\operatorname{real}(a)-i \times \operatorname{imag}(a)
$$

The numerictype and fimath objects of the input a are applied to the output.

See Also complex, imag, real

Purpose Create a contour graph of a matrix
Description Refer to the MATLAB contour reference page for more information.

| Purpose | Create a 3-D contour plot |
| :--- | :--- |
| Description | Refer to the MATLAB contour3 reference page for more information. |

Purpose Create a two-level contour plot computation
Description Refer to the MATLAB contourc reference page for more information.
Purpose \quad Create a filled 2-D contour plotDescription Refer to the MATLAB contourf reference page for more information.

Purpose Apply convergent rounding

Syntax convergent (x)

Description convergent (x) rounds the elements of x to the nearest integer, except in a tie, then rounds to the nearest even integer.

Examples MATLAB round and convergent differ in the way they treat values whose fractional part is 0.5 . In round, every tie is rounded up in absolute value. convergent rounds ties to the nearest even integer.

```
x=[-3.5:3.5]';
[x convergent(x) round(x)]
ans =
\begin{tabular}{rrr}
-3.5000 & -4.0000 & -4.0000 \\
-2.5000 & -2.0000 & -3.0000 \\
-1.5000 & -2.0000 & -2.0000 \\
-0.5000 & 0 & -1.0000 \\
0.5000 & 0 & 1.0000 \\
1.5000 & 2.0000 & 2.0000 \\
2.5000 & 2.0000 & 3.0000 \\
3.5000 & 4.0000 & 4.0000
\end{tabular}
```


copyobi

Purpose Make an independent copy of a quantizer object

```
Syntax \(\quad q 1=\operatorname{copyobj}(q)\)
    [q1,q2,...] = copyobj(obja,objb,...)
```

Description

Examples

See Also
quantizer, get, set in $q 1$. into $q 2$, and so on. thus its property values.

$q 1=\operatorname{copyobj}(q)$ makes a copy of quantizer object q and returns it
[q1,q2,...] = copyobj(obja,objb,...) copies obja into q1, objb

Using copyobj to copy a quantizer object is not the same as using the command syntax q1 = q to copy a quantizer object. quantizer objects have memory (their read-only properties). When you use copyobj, the resulting copy is independent of the original item-it does not share the original object's memory, such as the values of the properties min, max, noverflows, or noperations. Using q1 $=q$ creates a new object that is an alias for the original and shares the original object's memory, and

```
q = quantizer('CoefficientFormat',[8 7]);
    q1 = copyobj(q);
```

Purpose Return the complex conjugate transpose of a fi object

Syntax ctranspose(a)

Description ctranspose (a) returns the complex conjugate transpose of fi object a. It is also called for the syntax a^{\prime}.

See Also transpose

| Purpose | Return the unsigned decimal representation of the stored integer of a fi object as a string |
| :---: | :---: |
| Syntax | dec (a) |
| Description | Fixed-point numbers can be represented as |
| | $\begin{aligned} & \text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer } \\ & \text { or, equivalently, } \end{aligned}$ |
| | real-world value $=($ slope \times stored integer $)+$ bias |
| | The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word. |
| | $\operatorname{dec}(a)$ returns the stored integer of $f i$ object a in unsigned decimal format as a string. |
| Examples | The code |
| | $\begin{aligned} & a=f i\left(\left[\begin{array}{ll} -1 & 1 \end{array}\right], 1,8,7\right) ; \\ & \operatorname{dec}(a) \end{aligned}$ |
| | returns |
| | 128127 |
| See Also | bin, hex, int, oct, sdec |

Purpose
Syntaxx = denormalmax(q)
Description
Examples

q = quantizer('float',[6 3]);

$x=$ denormalmax(q)

$x=$
0.1875
Algorithm When q is a floating-point quantizer object,

denormalmax(q) = realmin(q) - denormalmin(q)
When q is a fixed-point quantizer object,

```
denormalmax(q) = eps(q)
```

See Also
denormalmin, eps, quantizer

Purpose

Syntax
Description

Examples

Algorithm
When q is a floating-point quantizer object,

$$
x=2^{E \min -f}
$$

where $E_{\text {min }}$ is equal to exponentmin(q).
When q is a fixed-point quantizer object,

$$
x=\operatorname{eps}(\mathfrak{q})=2^{-f}
$$

where f is equal to fractionlength (q).

See Also denormalmax, eps, quantizer

Purpose Return diagonal matrices or the diagonals of a matrix

Description Refer to the MATLAB diag reference page for more information.

disp

$\begin{array}{ll}\text { Purpose } & \text { Display an object } \\ \text { Description } & \text { Refer to the MATLAB disp reference page for more information. }\end{array}$

Purpose Divide two objects using a numerictype object

Syntax
 c = T.divide(a,b)

Description

Examples

$c=T . \operatorname{divide}(a, b)$ performs division on the elements of a by the elements of b using numerictype object T.
a and b must have the same dimensions unless one is a scalar. If either a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numeric type, then the built-in object is cast to the word length of the fi object, preserving best-precision fraction length.

If a and b are both MATLAB built-in doubles, then c is the double-precision quotient $a . / b$, and numerictype T is ignored.

This example highlights the precision of the fi divide function.
First, create an unsigned fi object with an 80 -bit word length and $2^{\wedge}-83$ scaling, which puts the leading 1 of the representation into the most significant bit. Initialize the object with double-precision floating-point value 0.1 , and examine the binary representation:

```
P =
fipref('NumberDisplay','bin','NumericTypeDisplay','short',...
            'FimathDisplay','none');
a = fi(0.1, false, 80, 83)
a =
1100110011001100110011001100110011001100110011001101000000000000
00000000000000000
(bin)
    u80,83
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100
```

Notice that the infinite repeating representation is truncated after 52 bits, because the mantissa of an IEEE standard double-precision floating-point number has 52 bits.

Contrast the above to calculating $1 / 10$ in fixed-point arithmetic with the quotient set to the same numeric type as before:

```
T = numerictype('Signed',false,'WordLength',80,...
    'FractionLength',83);
a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin
ans =
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100
```

Notice that when you use the divide function, the quotient is calculated to the full 80 bits, regardless of the precision of a and b . Thus, the fi object c represents $1 / 10$ more precisely than IEEE standard double-precision floating-point number can.

With 1000 bits of precision,

```
T = numerictype('Signed',false,'WordLength',1000,...
    'FractionLength',1003);
a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin
ans =
```

1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100

1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100

See Also add, fi, fimath, mpy, numerictype, sub, sum

Purpose Return the double-precision floating-point real-world value of a fi object

Syntax double(a)

Description Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
$$

or, equivalently,
real-world value $=($ slope \times stored integer $)+$ bias
double (a) returns the real-world value of a fi object in double-precision floating point.

See Also
 single

| Purpose | Indicate last index of array |
| :--- | :--- |
| Description | Refer to the MATLAB end reference page for more information. |

Purpose Return the quantized relative accuracy for fi objects or quantizer objects
Syntax eps(obj)
Descriptioneps (obj) returns the value of the least significant bit of the value ofthe fi object or quantizer object obj. The result of this function isequivalent to that given by the Fixed-Point Toolbox lsb function.
See Also lsb

Syntax
 $c=e q(a, b)$
 $\mathrm{a}=\mathrm{b}$

Description
$c=e q(a, b)$ is called for the syntax 'a $==b$ ' when a or b is a fi object. a and b must have the same dimensions unless one is a scalar. A scalar can be compared with another object of any size.
$\mathrm{a}==\mathrm{b}$ does an element-by-element comparison between a and b and returns a matrix of the same size with elements set to 1 where the relation is true, and 0 where the relation is false.

See Also

errorbar

Purpose Plot error bars along a curve
Description Refer to the MATLAB errorbar reference page for more information.

| Purpose | Plot elimination tree |
| :--- | :--- |
| Description | Refer to the MATLAB etreeplot reference page for more information. |

exponentbias

Purpose Return the exponent bias for a quantizer object

$$
\text { Syntax } \quad b=\operatorname{exponentbias(q)~}
$$

Description

Examples $\quad \begin{aligned} & \mathrm{q}=\text { quantizer ('double' }) ; \\ & \mathrm{b}=\operatorname{exponentbias}(\mathrm{q}) \\ & \mathrm{b}\end{aligned}$
1023

Algorithm For floating-point quantizer objects,

$$
b=2^{e-1}-1
$$

where $e=e p s(q)$, and exponentbias is the same as the exponent maximum.

For fixed-point quantizer objects, $b=0$ by definition.
See Also eps, exponentlength, exponentmax, exponentmin

exponentlength

Purpose Return the exponent length of a quantizer object

Syntax $\quad e=$ exponentlength (q)
Description

Examples
$q=$ quantizer('double');
e = exponentlength(q)
e =

11

Algorithm
 The exponent length is part of the format of a floating-point quantizer object [w e]. For fixed-point quantizer objects, $e=0$ by definition.

See Also
eps, exponentbias, exponentmax, exponentmin

Purpose Return the maximum exponent for a quantizer object

Syntax exponentmax (q)

Description
exponentmax (q) returns the maximum exponent for quantizer object q. When q is a fixed-point quantizer object, it returns 0 .

Examples $\quad q=q u a n t i z e r(' d o u b l e ') ;$ exponentmax(q)
 ans =
 1023

Algorithm For floating-point quantizer objects,

$$
E_{\max }=2^{e-1}-1
$$

For fixed-point quantizer objects, $E_{\max }=0$ by definition.

See Also
eps, exponentbias, exponentlength, exponentmin

Purpose
 Return the minimum exponent for a quantizer object

Syntax

Description

Examples

emin $=$ exponentmin(q)
emin = exponentmin(q) returns the minimum exponent for quantizer object q. If q is a fixed-point quantizer object, exponentmin returns 0 .

```
q = quantizer('double');
emin = exponentmin(q)
emin =
-1022
```


Algorithm

For floating-point quantizer objects,

$$
E_{\min }=-2^{e-1}+2
$$

For fixed-point quantizer objects, $E_{\text {min }}=0$.

See Also

eps, exponentbias, exponentlength, exponentmax

Purpose Easy-to-use contour plotter
Description Refer to the MATLAB ezcontour reference page for more information.

Purpose Easy-to-use filled contour plotter
Description Refer to the MATLAB ezcontourf reference page for more information.

Description Refer to the MATLAB ezmesh reference page for more information.

ezplot

Purpose Easy-to-use function plotter
Description Refer to the MATLAB ezplot reference page for more information.

ezplot3

Purpose Easy-to-use 3-D parametric curve plotter
Description Refer to the MATLAB ezplot3 reference page for more information.
Purpose Easy-to-use polar coordinate plotter

Description Refer to the MATLAB ezpolar reference page for more information.

Purpose Easy-to-use 3-D colored surface plotter
Description Refer to the MATLAB ezsurf reference page for more information.
$\begin{array}{ll}\text { Purpose } & \text { Easy-to-use combination surface/contour plotter } \\ \text { Description } & \text { Refer to the MATLAB ezsurfc reference page for more information. }\end{array}$

feather

Purpose Plot velocity vectors
Description Refer to the MATLAB feather reference page for more information.

Purpose Construct a fi object

```
Syntax
a = fi(v)
a = fi(v,s)
a = fi(v,s,w)
a = fi(v,s,w,f)
a = fi(v,s,w,slope,bias)
a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias)
a = fi(v,T)
a = fi(v,T,F)
a = fi(...'PropertyName',PropertyValue...)
fi('PropertyName',PropertyValue...)
```

Description You can use the fi constructor function in the following ways.

- $a=f i(v)$ returns a signed fixed-point object with value $v, 16$-bit word length, and best-precision fraction length.
- $a=f i(v, s)$ returns a fixed-point object with value v, signedness $\mathrm{s}, 16$-bit word length, and best-precision fraction length. s can be 0 (false) for unsigned or 1 (true) for signed.
- $a=f i(v, s, w)$ returns a fixed-point object with value v, signedness s , word length w , and best-precision fraction length.
- $a=f i(v, s, w, f)$ returns a fixed-point object with value v, signedness s, word length w, and fraction length f.
- a = fi(v,s,w,slope,bias) returns a fixed-point object with value v , signedness s , word length w , slope, and bias.
- a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns a fixed-point object with value v , signedness s , word length w , slopeadjustmentfactor, fixedexponent, and bias.
- a = fi(v,T) returns a fixed-point object with value v and embedded. numerictype T. Refer to for more information on numerictype objects.
- $\mathrm{fi}(\mathrm{a}, \mathrm{F})$ allows you to maintain the value and numerictype object of fi object a, while changing its fimath object to F
- $a=f i(v, T, F)$ returns a fixed-point object with value v, embedded. numerictype T, and embedded.fimath F. Refer to for more information on fimath objects.
- a = fi(...'PropertyName',PropertyValue...) and fi('PropertyName', PropertyValue...) allow you to set fixed-point objects for a fi object by property name/property value pairs.

The fi object has the following three general types of properties.

Note These properties are described in detail in "fi Object Properties" on page 9-2 in the Properties Reference.

- "Data Properties" on page 11-66
- "fimath Properties" on page 11-67
- "numerictype Properties" on page 11-68

Data Properties

The data properties of a fi object are always writable.

- bin - Stored integer value of a fi object in binary
- data - Numerical real-world value of a fi object
- dec - Stored integer value of a fi object in decimal
- double - Real-world value of a fi object, stored as a MATLAB double
- hex - Stored integer value of a fi object in hexadecimal
- int - Stored integer value of a fi object, stored in a built-in MATLAB integer data type. You can also use int8, int16, int32, uint8, uint16, and uint32 to get the stored integer value of a fi object in these formats
- oct - Stored integer value of a fi object in octal

These properties are described in detail in "fi Object Properties" on page 9-2.

fimath Properties

When you create a fi object, a fimath object is also automatically created as a property of the fi object.

- fimath - fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi object. The properties of the fimath object listed below are always writable.

- CastBeforeSum - Whether both operands are cast to the sum data type before addition
- MaxProductWordLength - Maximum allowable word length for the product data type
- MaxSumWordLength - Maximum allowable word length for the sum data type
- ProductFractionLength - Fraction length, in bits, of the product data type
- ProductMode - Defines how the product data type is determined
- ProductWordLength - Word length, in bits, of the product data type
- RoundMode - Rounding mode
- SumFractionLength - Fraction length, in bits, of the sum data type
- SumMode - Defines how the sum data type is determined
- SumWordLength - Word length, in bits, of the sum data type

These properties are described in detail in "fimath Object Properties" on page 9-5.

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a property of the fi object.

- numerictype - Object containing all the numeric type attributes of a fi object

The following numerictype properties are, by transitivity, also properties of a fi object. The properties of the numerictype object listed below are not writable once the fi object has been created. However, you can create a copy of a fi object with new values specified for the numerictype properties.

- Bias - Bias of a fi object
- DataType - Data type category associated with a fi object
- DataTypeMode - Data type and scaling mode of a fi object
- FixedExponent - Fixed-point exponent associated with a fi object
- SlopeAdjustmentFactor - Slope adjustment associated with a fi object
- FractionLength - Fraction length of the stored integer value of a fi object in bits
- Scaling - Fixed-point scaling mode of a fi object
- Signed - Whether a fi object is signed or unsigned
- Slope - Slope associated with a fi object
- WordLength - Word length of the stored integer value of a fi object in bits

These properties are described in detail in "numerictype Object Properties" on page 9-12.

Examples

Note For information on the display format of fi objects, refer to "Display Settings" on page 1-5.

Example 1

For example, the following creates a fi object with a value of pi, a word length of 8 bits, and a fraction length of 3 bits.

```
a = fi(pi, 1, 8, 3)
a =
```

3.1250

```
            DataTypeMode: Fixed-point: binary point scaling
                Signed: true
                WordLength: 8
FractionLength: 3
```


Example 2

The value v can also be an array.

```
a = fi((magic(3)/10), 1, 16, 12)
a =
```

| 0.8000 | 0.1001 | 0.6001 |
| :--- | :--- | :--- |
| 0.3000 | 0.5000 | 0.7000 |
| 0.3999 | 0.8999 | 0.2000 |

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 16

FractionLength: 12

Example 3

If you omit the argument f, it is set automatically to the best precision possible.

```
a = fi(pi, 1, 8)
a =
```

3.1563

```
            DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
            WordLength: 8
FractionLength: 5
```


Example 4

If you omit w and f, they are set automatically to 16 bits and the best precision possible, respectively.

```
a = fi(pi, 1)
a =
```

3.1416

DataTypeMode: Fixed-point: binary point scaling Signed: true
WordLength: 16
FractionLength: 13

Example 5

You can use property name/property value pairs to set fi properties when you create the object.

```
a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')
a =
```

3.1415

```
            DataTypeMode: Fixed-point: binary point scaling
            Signed: true
            WordLength: 16
                FractionLength: 13
```

See Also fimath, fipref, numerictype, quantizer, "fi Object Properties" on page 9-2

Purpose Construct a fimath object
Syntax $\quad \begin{aligned} F & =\text { fimath } \\ F & =\text { fimath }(\ldots \text { 'PropertyName ' }, \text { PropertyValue...) }\end{aligned}$

You can use the fimath constructor function in the following ways:

- $F=$ fimath creates a default fimath object.
- F = fimath(...'PropertyName',PropertyValue...) allows you to set the attributes of a fimath object using property name/property value pairs.

The properties of the fimath object are listed below. These properties are described in detail in "fimath Object Properties" on page 9-5 in the Properties Reference.

- CastBeforeSum - Whether both operands are cast to the sum data type before addition
- MaxProductWordLength - Maximum allowable word length for the product data type
- MaxSumWordLength - Maximum allowable word length for the sum data type
- OverflowMode - Overflow-handling mode
- ProductFractionLength - Fraction length, in bits, of the product data type
- ProductMode - Defines how the product data type is determined
- ProductWordLength - Word length, in bits, of the product data type
- RoundMode - Rounding mode
- SumFractionLength - Fraction length, in bits, of the sum data type
- SumMode - Defines how the sum data type is determined
- SumWordLength - Word length, in bits, of the sum data type

Examples Example 1

Type

```
F = fimath
```

to create a default fimath object.

```
F = fimath
F =
```

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

Example 2

You can set properties of fimath objects at the time of object creation by including properties after the arguments of the fimath constructor function. For example, to set the overflow mode to saturate and the rounding mode to convergent,

```
F = fimath('OverflowMode','saturate','RoundMode','convergent')
F =
```

RoundMode: convergent OverflowMode: saturate
ProductMode: FullPrecision MaxProductWordLength: 128

SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

See Also fi, fipref, numerictype, quantizer, "fimath Object Properties" on

Purpose Construct a fipref object

```
Syntax
P = fipref
P = fipref(...'PropertyName', PropertyValue...)
```

Description

Examples

Example 1

Type
P = fipref
to create a default fipref object.

```
P =
    NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'
    FimathDisplay: 'full'
        LoggingMode: 'Off'
```


Example 2

You can set properties of fipref objects at the time of object creation by including properties after the arguments of the fipref constructor function. For example, to set NumberDisplay to bin and AttributesDisplay to short,

```
P = fipref('NumberDisplay', 'bin', 'NumericType', 'short')
P =
    NumberDisplay: 'bin'
    NumericTypeDisplay: 'short'
    FimathDisplay: 'full'
        LoggingMode: 'Off'
```


See Also
 fi, fimath, numerictype, quantizer, savefipref, "fipref Object

 Properties" on page 9-10
Purpose Plot a function between specified limits

Description Refer to the MATLAB fplot reference page for more information.

fractionlength

Purpose Return the fraction length of a quantizer object
Syntax fractionlength(q)
Description fractionlength (q) returns the fraction length of quantizer object q.
Algorithm For floating-point quantizer objects, $f=w-e-1$, where w is the wordlength and e is the exponent length.
For fixed-point quantizer objects, f is part of the format $[w f]$.
See Also fi, numerictype, quantizer, wordlength

Purpose Determine whether the real-world value of one fi object is greater than or equal to another

Syntax
$c=g e(a, b)$
a >= b
$c=\operatorname{ge}(a, b)$ is called for the syntax' $a>=b$ ' when a or b is a fi object. a and b must have the same dimensions unless one is a scalar. A scalar can be compared with another object of any size.
a >= b does an element-by-element comparison between a and b and returns a matrix of the same size with elements set to 1 where the relation is true, and 0 where the relation is false.

See Also

eq, gt, le, lt, ne

Purpose Return the property values of a quantizer object

```
Syntax
get(q,pn,pv)
value = get(q, 'propertyname')
structure = get(q)
```

Description get ($q, p n, p v$) displays the property names and property values associated with quantizer object q.
pn is the name of a property of the object obj, and pv is the value associated with pn.
value $=$ get (q, 'propertyname') returns the property value associated with the property named in the string 'propertyname' for the quantizer object q. If you replace the string 'propertyname' by a cell array of a vector of strings containing property names, get returns a cell array of a vector of corresponding values.
structure $=$ get (q) returns a structure containing the properties and states of quantizer object q.

See Also quantizer, set

Purpose Plot set of nodes using an adjacency matrix

Description Refer to the MATLAB gplot reference page for more information.

Purpose $\begin{aligned} & \text { Determine whether the real-world value of one fi object is greater than } \\ & \text { another }\end{aligned}$
Syntax
$c=g t(a, b)$
a > b

Description
$c=g t(a, b)$ is called for the syntax 'a > b' when a or b is a fi object. a and b must have the same dimensions unless one is a scalar. A scalar can be compared with another object of any size.
$a \quad>b$ does an element-by-element comparison between a and b and returns a matrix of the same size with elements set to 1 where the relation is true, and 0 where the relation is false.

See Also

eq, ge, le, lt, ne

Purpose Return a Hankel matrix

Description Refer to the MATLAB hankel reference page for more information.

| Purpose | Return the hexadecimal representation of the stored integer of a fi object as a string |
| :---: | :---: |
| Syntax | hexadecimal(a) |
| Description | Fixed-point numbers can be represented as |
| | $\begin{aligned} & \text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer } \\ & \text { or, equivalently, } \end{aligned}$ |
| | real-world value $=($ slope \times stored integer $)+$ bias |
| | The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word. |
| | hexadecimal (a) returns the stored integer of fi object a in hexadecimal format as a string. |
| Examples | The following code |
| | $\begin{aligned} & a=f i\left(\left[\begin{array}{ll} -1 & 1 \end{array}\right], 1,8,7\right) ; \\ & \operatorname{hex}(a) \end{aligned}$ |
| | returns |
| | 80 7f |
| See Also | bin, dec, int, oct |

Purpose Convert a hexadecimal string to a number using a quantizer object

```
Syntax
x = hex2num(q,h)
[x1,x2,...] = hex2num(q,h1,h2,...)
```


Description

Examples

To create all the 4-bit fixed-point two's complement numbers in fractional form, use the following code.

```
q = quantizer([4 3]);
h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)
x =
    0.8750 0.3750 -0.1250 -0.6250
    0.7500 0.2500 -0.2500 -0.7500
    0.6250 0.1250 -0.3750 -0.8750
    0.5000 0 -0.5000 -1.0000
bin2num, num2bin, num2hex, num2int
```

See Also

| Purpose | Create histogram plot |
| :--- | :--- |
| Description | Refer to the MATLAB hist reference page for more information. |

| Purpose | Return histogram count |
| :--- | :--- |
| Description | Refer to the MATLAB histc reference page for more information. |

Purpose Horizontally concatenate two or more fi objects
Syntax $\quad \begin{aligned} & c=\operatorname{norzcat}(a, b, \ldots) \\ & {[a, b, \ldots]}\end{aligned}$

Description $c=\operatorname{horzcat}(a, b, \ldots)$ is called for the syntax $[a, b, \ldots]$ when any of a, b, \ldots, is a fi object.
[a b, ...] or [a,b, ...] is the horizontal concatenation of matrices a and b. a and b must have the same number of rows. Any number of matrices can be concatenated within one pair of brackets. N-D arrays are horizontally concatenated along the second dimension. The first and remaining dimensions must match.

Horizontal and vertical concatenation can be combined together as in [1 2;3 4].
[ab; c] is allowed if the number of rows of a equals the number of rows of b, and if the number of columns of a plus the number of columns of b equals the number of columns of c.
The matrices in a concatenation expression can themselves be formed via a concatenation as in [a b; [c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi objects c are taken from the leftmost fi object in the list ($\mathrm{a}, \mathrm{b}, \ldots$. . .

See Also vertcat

Purpose Return the imaginary part

Description Refer to the MATLAB imag reference page for more information.

innerprodintbits

Purpose Return the number of integer bits needed for a fixed-point inner product

Syntax innerprodintbits(a,b)

Description

Examples

Algorithm
innerprodintbits (a, b) computes the minimum number of integer bits necessary in the inner product of a ${ }^{*}$ b to guarantee that no overflows occur and to preserve best precision.

- a and b are fi vectors.
- The values of a are known.
- Only the numeric type of b is relevant. The values of b are ignored.

The primary use of this function is to determine the number of integer bits necessary in the output Y of an FIR filter that computes the inner product between constant coefficient row vector B and state column vector Z. For example,

```
for k=1:length(X);
    Z = [X(k);Z(1:end-1)];
    Y(k) = B * Z;
end
```

In general, an inner product grows $\log 2(n)$ bits for vectors of length n. However, in the case of this function the vector a is known and its values do not change. This knowledge is used to compute the smallest number of integer bits that are necessary in the output to guarantee that no overflow will occur.

The largest gain occurs when the vector b has the same sign as the constant vector a. Therefore, the largest gain due to the vector a is $a * \operatorname{sign}\left(a^{\prime}\right)$, which is equal to sum(abs(a)).

The overall number of integer bits necessary to guarantee that no overflow occurs in the inner product is computed by:

$$
\log 2(\text { sum(abs(a)) }+ \text { number of integer bits in } b+1 \text { sign bit }
$$

| Purpose | Display Property Inspector |
| :--- | :--- |
| Description | Refer to the MATLAB inspect reference page for more information. |

Purpose Return the smallest built-in integer in which the stored integer value of a fi object will fit

Syntax int(a)

Description
 Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
$$

or, equivalently,
real-world value $=($ slope \times stored integer $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
int (a) returns the smallest built-in integer of the data type in which the stored integer value of $f i$ object a will fit.
The following table gives the return type of the int function.

| Word Length | Return Type
 for Signed $\mathbf{f i}$ | Return Type
 for Unsigned
 fi |
| :--- | :--- | :--- |
| word length <= 8 bits | int8 | uint8 |
| 8 bits < word length <= 16 bits | int16 | uint16 |
| 16 bits < word length <= 32 bits | int32 | uint32 |
| $32<$ word length | double | double |

Note When the word length is greater than 52 bits, the return value can have quantization error. For bit-true integer representation of very large word lengths, use bin, oct, dec, hex, or sdec.

See Also int8, int16, int32, uint8, uint16, uint32

Purpose Return the stored integer value of a fi object as a built-in int8

Syntax int8(a)

Description Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
$$

or, equivalently,
real-world value $=($ slope \times stored integer $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
int8(a) returns the stored integer value of $f i$ object a as a built-in int8. If the stored integer word length is too big for an int8, or if the stored integer is unsigned, the returned value saturates to an int8.

See Also int, int16, int32, uint8, uint16, uint32

Purpose \quad Return the stored integer value of a fi object as a built-in int16

Syntax int16(a)

Description Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
$$

or, equivalently,
real-world value $=($ slope \times stored integer $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
int16(a) returns the stored integer value of fi object a as a built-in int16. If the stored integer word length is too big for an int16, or if the stored integer is unsigned, the returned value saturates to an int16.

See Also int, int8, int32, uint8, uint16, uint32

Purpose \quad Return the stored integer value of a fi object as a built-in int32

Syntax int32(a)

Description Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
$$

or, equivalently,

$$
\text { real-world value }=(\text { slope } \times \text { stored } \text { integer })+\text { bias }
$$

The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
int32(a) returns the stored integer value of fi object a as a built-in int32. If the stored integer word length is too big for an int32, or if the stored integer is unsigned, the returned value saturates to an int32.

See Also int, int8, int16, uint8, uint16, uint32

| Purpose | Return the largest positive stored integer value representable by the
 numerictype of a fi object |
| :--- | :--- |
| Syntax | $x=\operatorname{intmax}(a)$ |
| Description | $x=$ intmax (a) returns the largest positive stored integer value
 representable by the numerictype of a. |
| See Also | intmin, lsb, stripscaling |

```
Purpose Return smallest stored integer value representable by numerictype of fi object
```

Syntax $x=\operatorname{intmin}(a)$
Description

```\(x=\) intmin(a) returns the smallest stored integer value representableby the numerictype of a.
```

Examples
a = fi(pi, true, 16, 12);

```
x = intmin(a)
    x =
        -32768
            DataTypeMode: Fixed-point: binary point scaling
                Signed: true
            WordLength: 16
        FractionLength: 0
```

See Also intmax, lsb, stripscaling
$\begin{array}{ll}\text { Purpose } & \text { Inverse permute the dimensions of a multidimensional array } \\ \text { Description } & \text { Refer to the MATLAB ipermute reference page for more information. }\end{array}$

iscolumn

Purpose Determine whether a fi object is a column vector

Syntax iscolumn (a)

Description $\begin{aligned} & \text { iscolumn(a) returns } 1 \text { if the fi object a is a column vector, and } 0 \\ & \text { otherwise. }\end{aligned}$
See Also isrow
Purpose Determine if array is empty
Description Refer to the MATLAB isempty reference page for more information.
\(\left.$$
\begin{array}{ll}\text { Purpose } & \begin{array}{l}\text { Determine whether the real-world values of two fi objects are equal, } \\
\text { or determine whether the properties of two fimath, numerictype, or } \\
\text { quantizer objects are equal }\end{array} \\
\text { Syntax } & \begin{array}{l}\text { isequal }(a, b, \ldots) \\
\text { isequal }(F, G, \ldots) \\
\text { isequal }(T, U, \ldots) \\
\text { isequal }(q, r, \ldots)\end{array} \\
\text { Description } \quad \begin{array}{l}\text { isequal }(a, b, \ldots) \text { returns } 1 \text { if all the fi object inputs have the same } \\
\text { real-world value. Otherwise, the function returns } 0 .\end{array}
$$

isequal(F, G, ···) returns 1 if all the fimath object inputs have the

same properties. Otherwise, the function returns 0 .\end{array}\right\}\)| isequal (T, U, \ldots) returns 1 if all the numerictype object inputs have |
| :--- |
| the same properties. Otherwise, the function returns 0. |
| isequal (q, r, \ldots) returns 1 if all the quantizer object inputs have |
| the same properties. Otherwise, the function returns 0. |

Purpose Determine whether a variable is a fi object

Syntax
 isfi(a)

Description isfi(a) returns 1 if a is a fi object, and 0 otherwise.
See Also fi, isfimath, isnumerictype

isfimath

Purpose	Determine whether a variable is a fimath object
Syntax	isfimath (F)
Description	isfimath (F) returns 1 if F is a fimath object, and 0 otherwise.
See Also	fimath, isfi, isnumerictype

Purpose	Determine if array elements are finite
Description	Refer to the MATLAB isfinite reference page for more information.

Purpose	Determine if array elements are infinite
Description	Refer to the MATLAB isinf reference page for more information.

Purpose	Determine if array elements are NaN
Description	Refer to the MATLAB isnan reference page for more information.

Purpose	Determine if input is numeric array
Description	Refer to the MATLAB isnumeric reference page for more information.

Purpose Determine whether a variable is a numerictype object
Syntax isnumerictype(T)
Description isnumerictype(T) returns 1 if a is a numerictype object, and 0 otherwise.
See Also isfi, isfimath, numerictype

isobject

$\begin{array}{ll}\text { Purpose } & \text { Determine if input is MATLAB OOPS object } \\ \text { Description } & \text { Refer to the MATLAB isobject reference page for more information. }\end{array}$

Syntax ispropequal (a, b, \ldots)
Description ispropequal (a, b, \ldots) returns 1 if all the inputs are fi objects and all the inputs have the same properties. Otherwise, the function returns 0.
To compare the real-world values of two fi objects a and b, use $a==$ b or isequal (a, b).

See Also fi, isequal

Purpose	Determine if array elements are real
Description	Refer to the MATLAB isreal reference page for more information.

Purpose Determine whether a fi object is a row vector

Syntax isrow(a)

Description isrow(a) returns 1 if the fi object a is a row vector, and 0 otherwise.
See Also iscolumn
$\begin{array}{ll}\text { Purpose } & \text { Determine if input is scalar } \\ \text { Description } & \text { Refer to the MATLAB isscalar reference page for more information. }\end{array}$

Purpose Determine whether a fi object is signed

Syntax issigned(a)

Description issigned (a) returns 1 if the fi object a is signed, and 0 if it is unsigned.

Purpose	Determine if input is vector
Description	Refer to the MATLAB isvector reference page for more information.

Purpose $\begin{aligned} & \text { Determine whether the real-world value of a fi object is less than or } \\ & \text { equal to another }\end{aligned}$ equal to another

Syntax
$c=l e(a, b)$
a <= b
$c=l e(a, b)$ is called for the syntax $' a<=b$ ' when a or b is a fi object. a and b must have the same dimensions unless one is a scalar. A scalar can be compared with another object of any size.
$\mathrm{a}<=\mathrm{b}$ does an element-by-element comparison between a and b and returns a matrix of the same size with elements set to 1 where the relation is true, and 0 where the relation is false.

See Also

eq, ge, gt, lt, ne

length

Purpose	Return the length of a vector
Description	Refer to the MATLAB length reference page for more information.

$\begin{array}{ll}\text { Purpose } & \text { Create line object } \\ \text { Description } & \text { Refer to the MATLAB line reference page for more information. }\end{array}$

Purpose	Convert numeric values to logical
Description	Refer to the MATLAB logical reference page for more information.

Purpose Create log-log scale plot

Description Refer to the MATLAB loglog reference page for more information.
Purpose Return lower bound of range of fi object
Syntax lowerbound (a)Description lowerbound (a) returns the lower bound of the range of $f i$ object a. If $L$$=$ lowerbound(a) and $U=$ upperbound(a), then $[L, U]=$ range(a).
See Also range, upperbound

Purpose Return the scaling of the least significant bit of a fi object
Syntax lsb(a)
Description lsb(a) returns the scaling of the least significant bit of fi object a . The result is equivalent to the result given by the eps function.

Purpose Determine whether the real-world value of a fi object is less than another

Syntax
 $c=l t(a, b)$
 a < b

Description
$c=\operatorname{lt}(a, b)$ is called for the syntax $' a<b '$ when a or b is a fi object. a and b must have the same dimensions unless one is a scalar. A scalar can be compared with another object of any size.
$\mathrm{a}<\mathrm{b}$ does an element-by-element comparison between a and b and returns a matrix of the same size with elements set to 1 where the relation is true, and 0 where the relation is false.

See Also

eq, ge, gt, le, ne

Purpose Return largest element in array of $f i$ objects

Syntax \quad| | $\max (a)$ |
| :--- | :--- |
| | $\max (a, b)$ |
| | $[y, v]=\max (a)$ |
| | $[y, v]=\max (a,[], \operatorname{dim})$ |

Description

- For vectors, $\max (\mathrm{a})$ is the largest element in a.
- For matrices, $\max (\mathrm{a})$ is a row vector containing the maximum element from each column.
- For N-D arrays, max (a) operates along the first nonsingleton dimension.
$\max (a, b)$ returns an array the same size as a and b with the largest elements taken from a or b. Either one can be a scalar.
$[y, v]=\max (a)$ returns the indices of the maximum values in vector v. If the values along the first nonsingleton dimension contain more than one maximal element, the index of the first one is returned.
$[y, v]=\max (a,[], d i m)$ operates along the dimension dim.
When complex, the magnitude $\max (\operatorname{abs}(a))$ is used, and the angle angle (a) is ignored. NaNs are ignored when computing the maximum.

See Also min

Purpose Return largest real-world value of fi object or maximum value of quantizer object before quantization

Syntax \quad| $\max \log (a)$ |
| :--- |
| $\operatorname{maxlog}(q)$ |

Description

Examples

```
P = fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
maxlog(x)
ans =
```

3

See Also fipref, minlog, noperations, noverflows, nunderflows, resetlog

Purpose Create mesh plot

Description Refer to the MATLAB mesh reference page for more information.

Purpose Create mesh plot with contour plot
Description Refer to the MATLAB meshc reference page for more information.

Purpose Create mesh plot with curtain plot
Description Refer to the MATLAB meshz reference page for more information.

min

Purpose Return smallest element in array of $f i$ objects

```
Syntax
min(a)
min(a,b)
[y,v] = min(a)
[y,v] = min(a,[],dim)
```


Description

- For vectors, min(a) is the smallest element in a.
- For matrices, min(a) is a row vector containing the minimum element from each column.
- For N-D arrays, min(a) operates along the first nonsingleton dimension.
$\min (a, b)$ returns an array the same size as a and b with the smallest elements taken from a or b. Either one can be a scalar.
$[y, v]=\min (a)$ returns the indices of the minimum values in vector v. If the values along the first nonsingleton dimension contain more than one minimal element, the index of the first one is returned.
$[y, v]=\min (a,[], d i m)$ operates along the dimension dim.
When complex, the magnitude min(abs(a)) is used, and the angle angle(a) is ignored. NaNs are ignored when computing the minimum.

See Also max

Purpose

Syntax
 Description

Examples

See Also

Return smallest real-world value of fi object or minimum value of quantizer object before quantization
minlog(a)
minlog(q)
minlog (a) returns the smallest real-world value of $f i$ object a since logging was turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a fi object using the resetlog function.
minlog (q) is the minimum value before quantization during a call to quantize (q, \ldots) for quantizer object q. This value is the minimum value encountered over successive calls to quantize and is reset with resetlog(q). minlog(q) is equivalent to get($\left.q,{ }^{\prime} \mathrm{minlog}^{\prime}\right)$ and q.minlog.

```
P = fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
minlog(x)
ans =
```

-1.5
fipref, maxlog, noperations, noverflows, nunderflows, resetlog

Purpose Return the matrix difference between fi objects

Syntax minus (a, b)

Description minus (a, b) is called for the syntax ' $a-b$ ' when a or b is an object.
$a-b$ subtracts matrix b from matrix $a . a$ and b must have the same dimensions unless one is a scalar (a 1-by-1 matrix). A scalar can be subtracted from anything.
minus does not support fi objects of data type Boolean.
See Also mtimes, plus, times, uminus

Purpose Multiply two objects using a fimath object

Syntax
 c = F.mpy (a,b)

Description

$c=F . m p y(a, b)$ performs elementwise multiplication on a and b using fimath object F. This is helpful in cases when you want to override the fimath objects of a and b, or if the fimath objects of a and b are different.
a and b must have the same dimensions unless one is a scalar. If either a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numeric type, then the built-in object is cast to the word length of the fi object, preserving best-precision fraction length.

Examples

In this example, c is the 40 -bit product of a and b with fraction length 30 .

```
a = fi(pi);
b = fi(exp(1));
F = fimath('ProductMode','SpecifyPrecision',...
    'ProductWordLength',40,'ProductFractionLength',30);
c = F.mpy(a, b)
c =
```

8.5397

DataTypeMode: Fixed-point: binary point scaling Signed: true
WordLength: 40
FractionLength: 30
RoundMode: nearest
OverflowMode: saturate
ProductMode: SpecifyPrecision
ProductWordLength: 40
ProductFractionLength: 30

SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Algorithm $\quad c=F \cdot m p y(a, b)$ is equivalent to
a.fimath $=\mathrm{F}$;
b.fimath = F;
c = a .* b;

except that the fimath properties of a and b are not modified when you use the functional form.

See Also add, divide, fi, fimath, numerictype, sub, sum

Purpose Return the matrix product of $f i$ objects

Syntax
 mtimes(a,b)

Description mtimes (a, b) is called for the syntax ' a * b ' when a or b is an object.
$a \quad$ * b is the matrix product of a and b. Any scalar (a 1-by- 1 matrix) can multiply anything. Otherwise, the number of columns of a must equal the number of rows of b.
mtimes does not support fi objects of data type Boolean.
See Also plus, minus, times, uminus

Purpose	Return number of array dimensions
Description	Refer to the MATLAB ndims reference page for more information.

Purpose Determine whether the real-world values of two fi objects are not equal

$$
\begin{array}{ll}
\text { Syntax } & c=n e(a, b) \\
& a \sim=b
\end{array}
$$

Description
$c=n e(a, b)$ is called for the syntax ' $a \sim=b$ ' when a or b is a fi object. a and b must have the same dimensions unless one is a scalar. A scalar can be compared with another object of any size.
$\mathrm{a} \sim=\mathrm{b}$ does an element-by-element comparison between a and b and returns a matrix of the same size with elements set to 1 where the relation is true, and 0 where the relation is false.

See Also

eq, ge, gt, le, lt

noperations

Purpose Return number of operations
Syntax noperations(a)
noperations(q)

Description

See Also
Purpose Find logical NOT of array or scalar inputDescription Refer to the MATLAB not reference page for more information.
Purpose Return number of overflows

Syntax \quad| noverflows(a) |
| :--- |
| noverflows(q) |

Description

noverflows (a) returns the number of overflows of fi object a since logging was turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a fi object using the resetlog function.
noverflows (q) returns the accumulated number of overflows resulting from quantization operations performed by a quantizer object q.

See Also

maxlog, minlog, noperations, nunderflows, resetlog

Purpose Convert a number to a binary string using a quantizer object

Syntax
 $y=n u m 2 b i n(q, x)$

Description
$y=$ num2bin (q, x) converts numeric array x into binary strings returned in y. When x is a cell array, each numeric element of x is converted to binary. If x is a structure, each numeric field of x is converted to binary.
num2bin and bin2num are inverses of one another, differing in that num2bin returns the binary strings in a column.

Examples

$x=\operatorname{magic}(3) / 9$;
$q=q u a n t i z e r([4,3])$;
$y=\operatorname{num2bin}(q, x)$
Warning: 1 overflow.
y $=$
0111
0010
0011
0000
0100
0111
0101
0110
0001
See Also bin2num, hex2num, num2hex, num2int

num2hex

Purpose

Syntax

Description

Convert a number to its hexadecimal equivalent using a quantizer object
$y=\operatorname{num2hex}(q, x)$
$y=$ num2hex (q, x) converts numeric array x into hexadecimal strings returned in y. When x is a cell array, each numeric element of x is converted to hexadecimal. If x is a structure, each numeric field of x is converted to hexadecimal.

For fixed-point quantizer objects, the representation is two's complement. For floating-point quantizer objects, the representation is IEEE Standard 754 style.

For example, for $q=$ quantizer ('double')
num2hex(q, nan)
ans =
fff80000000000000
The leading fraction bit is 1 , all other fraction bits are 0 . Sign bit is 1 , exponent bits are all 1 .
num2hex(q,inf)
ans =
7ff00000000000000
Sign bit is 0 , exponent bits are all 1 , all fraction bits are 0.

```
num2hex(q,-inf)
```

ans $=$
fff00000000000000

Sign bit is 1 , exponent bits are all 1 , all fraction bits are 0 .
num2hex and hex2num are inverses of each other, except that num2hex returns the hexadecimal strings in a column.

Examples

This is a floating-point example using a quantizer object q that has 6 -bit word length and 3 -bit exponent length.
$x=\operatorname{magic}(3)$;
$\mathrm{q}=$ quantizer('float',[6 3]);
$y=\operatorname{num2hex}(q, x)$
$y=$
18
12
14
0c
15
18
16
17
10
See Also
bin2num, hex2num, num2bin, num2int

Purpose Convert a number to a signed integer

Syntax $\quad y=\operatorname{num} 2 \operatorname{int}(q, x)$
$[y 1, y, \ldots]=\operatorname{num2int}(q, x 1, x, \ldots)$

Description
$\mathrm{y}=\operatorname{num2int}(\mathrm{q}, \mathrm{x})$ uses q .format to convert numeric x to an integer.
$[y 1, y, \ldots]=\operatorname{num} 2 i n t(q, x 1, x, \ldots)$ uses $q . f o r m a t ~ t o ~ c o n v e r t ~$ numeric values $\mathrm{x} 1, \mathrm{x} 2, \ldots$ to integers $\mathrm{y} 1, \mathrm{y} 2, \ldots$

Examples All the two's complement 4-bit numbers in fractional form are given by

$$
\left.\begin{array}{rl}
x=\left[\begin{array}{llll}
0.875 & 0.375 & -0.125 & -0.625 \\
0.750 & 0.250 & -0.250 & -0.750 \\
0.625 & 0.125 & -0.375 & -0.875 \\
& 0.500 & 0.000 & -0.500
\end{array}\right)-1.000
\end{array}\right] ;
$$

q=quantizer([4 3]);
$y=n u m 2 i n t(q, x)$
$\mathrm{y}=$

7	3	-1	-5
6	2	-2	-6
5	1	-3	-7
4	0	-4	-8

When q is a fixed-point quantizer object, f is equal to fractionlength(q), and x is numeric

$$
y=x \times 2^{f}
$$

When q is a floating-point quantizer object, $y=x$. num2int is meaningful only for fixed-point quantizer objects.

See Also bin2num, hex2num, num2bin, num2hex

Purpose Return number of data elements in fi array
Syntax numberofelements(a)
Description numberofelements(a) returns the number of data elements in a fi array. numberofelements(a) == prod(size(a)).
Note that fi is a MATLAB object, and therefore numel(a) returns 1 when a is a fi object. Refer to the information about classes in the MATLAB numel reference page.

See Also max, min, numel

Purpose Construct a numerictype object
Syntax $\quad T=$ numerictype
T = numerictype(s)
T = numerictype(s,w)
$\mathrm{T}=$ numerictype(s,w,f)
T = numerictype(s,w,slope,bias)
T = numerictype(s,w,slopeadjustmentfactor,fixedexponent, bias)
T = numerictype(property1, value1, ...)
T = numerictype(T1, property1, value1, ...)

Description

You can use the numerictype constructor function in the following ways:

- $\mathrm{T}=$ numerictype creates a default numerictype object.
- $T=$ numerictype(s) creates a numerictype object with Fixed-point: binary point scaling, signedness s, 16-bit word length and 15-bit fraction length.
- T = numerictype(s,w) creates a numerictype object with Fixed-point: binary point scaling, signedness s, word length w and 15 -bit fraction length.
- T = numerictype(s,w,f) creates a numerictype object with Fixed-point: binary point scaling, signedness s, word length w and fraction length f.
- T = numerictype(s,w,slope, bias) creates a numerictype object with Fixed-point: slope and bias scaling, signedness s, word length w, slope, and bias.
- T =
numerictype(s,w,slopeadjustmentfactor,fixedexponent, bias) creates a numerictype object with Fixed-point: slope and bias scaling, signedness s, word length w, slopeadjustmentfactor, fixedexponent, and bias.
- T = numerictype(property1, value1, ...) allows you to set properties for a numerictype object using property name/property value pairs.
- T = numerictype(T1, property1, value1, ...) allows you to make a copy of an existing numerictype object, while modifying any or all of the property values.

The properties of the numerictype object are listed below. These properties are described in detail in "numerictype Object Properties" on page 9-12.

- Bias - Bias
- DataType - Data type category
- DataTypeMode - Data type and scaling mode
- FixedExponent - Fixed-point exponent
- SlopeAdjustmentFactor- Slope adjustment
- FractionLength - Fraction length of the stored integer value, in bits
- Scaling - Fixed-point scaling mode
- Signed - Signed or unsigned
- Slope - Slope
- WordLength - Word length of the stored integer value, in bits

Examples Example 1

Type
T = numerictype
to create a default numerictype object.
$\mathrm{T}=$

```
DataType: Fixed
    Scaling: BinaryPoint
    Signed: true
```


WordLength: 16

FractionLength: 15

Example 2

The following creates a signed numerictype object with a 32 -bit word length and 30 -bit fraction length.

```
T = numerictype(1, 32, 30)
T =
    DataTypeMode: Fixed-point: binary point scaling
            Signed: true
            WordLength: 32
FractionLength: 30
```


Example 3

If you omit the argument f, it is automatically set to the best precision possible.

```
T = numerictype(1, 32)
```

T =

> DataTypeMode: Fixed-point: binary point scaling Signed: true
> WordLength: 32
> FractionLength: 15

Example 4

```
T = numerictype(1)
T =
```

```
    DataTypeMode: Fixed-point: binary point scaling
        Signed: true
        WordLength: 16
FractionLength: 15
```


Example 5

```
T = numerictype('Signed', true, 'DataTypeMode', ...
'Fixed-point: slope and bias', 'WordLength', 32, 'Slope', ...
2^-2, 'Bias', 4)
T =
```

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true
WordLength: 32
Slope: 0.25
Bias: 4
fi, fimath, fipref, quantizer, "numerictype Object Properties" on page 9-12

nunderflows

Purpose Return number of underflows

Syntax nunderflows(a)
 nunderflows(q)

Description

nunderflows (a) returns the number of underflows of fi object a since logging was turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a fi object using the resetlog function.
nunderflows (q) returns the accumulated number of underflows resulting from quantization operations performed by a quantizer object q.

See Also maxlog, minlog, noperations, noverflows, resetlog

Purpose Return the octal representation of the stored integer of a fi object as a string

Syntax

oct (a)
Description
Fixed-point numbers can be represented as

$$
\begin{aligned}
& \text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer } \\
& \text { or, equivalently, } \\
& \text { real-world value }=(\text { slope } \times \text { stored } \text { integer })+\text { bias }
\end{aligned}
$$

The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
oct (a) returns the stored integer of fi object a in octal format as a string.

Examples The following code

```
    a = fi([-1 1],1,8,7);
    oct(a)
returns
    200 177
```

See Also bin, dec, hex, int

Purpose Find logical OR of array or scalar inputs
Description Refer to the MATLAB or reference page for more information.

Purpose	Create patch graphics object
Description	Refer to the MATLAB patch reference page for more information.

Purpose Create pseudocolor plot

Description Refer to the MATLAB pcolor reference page for more information.
Purpose Rearrange the dimensions of a multidimensional arrayDescription Refer to the MATLAB permute reference page for more information.

Description Refer to the MATLAB plot reference page for more information.

Purpose Create 3-D line plot

Description Refer to the MATLAB plot3 reference page for more information.

plotmatrix

$\begin{array}{ll}\text { Purpose } & \text { Draw scatter plots } \\ \text { Description } & \text { Refer to the MATLAB plotmatrix reference page for more information. }\end{array}$

Purpose Create graph with y-axes on both right and left sides
Description Refer to the MATLAB plotyy reference page for more information.
Purpose Return the matrix sum of fi objects
Syntax plus(a,b)
Description plus (a, b) is called for the syntax $' a+b$ ' when a or b is an object.
$a+b$ adds matrices a and b. a and b must have the same dimensionsunless one is a scalar (a 1-by-1 matrix). A scalar can be added toanything.
plus does not support fi objects of data type Boolean.
See Also minus, mtimes, times, uminus

Purpose Plot polar coordinates

Description Refer to the MATLAB polar reference page for more information.

Purpose Multiply by a power of 2

Syntax
 $\mathrm{b}=\operatorname{pow} 2(\mathrm{a}, \mathrm{K})$

Description
$\mathrm{b}=\operatorname{pow2}(\mathrm{a}, \mathrm{K})$ returns

$$
b=a \times 2^{K}
$$

where K is an integer and a and b are fi objects. If K is a non-integer, it will be rounded to floor before the calculation is performed. The scaling of a must be equivalent to binary point-only scaling; in other words, it must have a fractional slope of 1 and a bias of 0 .

The syntax $\mathrm{b}=\operatorname{pow} 2(\mathrm{a})$ is not supported when a is a fi object.
a can be real or complex. If a is complex, pow2 operates on both the real and complex portions of a.
pow2 does not support fi objects of data type Boolean.
Examples
The following example shows the use of pow 2 with a complex fi object:

```
format long g
P = fipref('NumericTypeDisplay', 'short', 'FimathDisplay',...
'none');
a = fi(57 - 2i, 1, 16, 8)
a =
57 -
    s16,8
pow2(a, 2)
ans =
s16, 8

\section*{See Also \\ bitshift}

Purpose Apply a quantizer object to data
```

Syntax
y = quantize(q, x)
[y1,y2,···.]quantize(q,x1,x2,...)

```

\section*{Description}

\section*{Examples}
\(y=\) quantize \((q, x)\) uses the quantizer object \(q\) to quantize \(x\). When \(x\) is a numeric array, each element of \(x\) is quantized. When \(x\) is a cell array, each numeric element of the cell array is quantized. When \(x\) is a structure, each numeric field of \(x\) is quantized. Nonnumeric elements or fields of \(x\) are left unchanged and quantize does not issue warnings for nonnumeric values.
\([y 1, y 2, \ldots]\) quantize \((q, x 1, x 2, \ldots)\) is equivalent to
\(y 1=q u a n t i z e(q, x 1), y 2=q u a n t i z e(q, x 2), \ldots\)

The quantizer object states
- max - Maximum value before quantizing
- min - Minimum value before quantizing
- noverflows - Number of overflows
- nunderflows - Number of underflows
- noperations - Number of quantization operations
are updated during the call to quantize, and running totals are kept until a call to resetlog is made.

The following examples demonstrate using quantize to quantize data.

\section*{Example 1-Custom Precision Floating-Point}

The code listed here produces the plot shown in the following figure.
```

u=linspace(-15,15,1000);
q=quantizer([6 3],'float');
range(q)

```
```

ans =
-14 14
y=quantize(q,u);
plot(u,y);title(tostring(q))
Warning: 68 overflows.

```


\section*{Example 2 - Fixed-Point}

The code listed here produces the plot shown in the following figure.
```

u=linspace(-15,15,1000);
q=quantizer([6 2],'wrap');

```
```

range(q)
ans =
-8.0000 7.7500
y=quantize(q,u);
plot(u,y);title(tostring(q))
Warning: 468 overflows.

```


See Also quantizer, set

\section*{Purpose Construct a quantizer object}

\section*{Syntax}
```

q = quantizer
q = quantizer('PropertyName1',PropertyValue1,...)
q = quantizer(PropertyValue1,PropertyValue2,...)
q = quantizer(struct)
q = quantizer(pn,pv)

```

Description
\(\mathrm{q}=\) quantizer creates a quantizer object with properties set to their default values.
q = quantizer('PropertyName1',PropertyValue1,...) uses property name/ property value pairs.
q = quantizer(PropertyValue1, PropertyValue2,...) creates a quantizer object with the listed property values. When two values conflict, quantizer sets the last property value in the list. Property values are unique; you can set the property names by specifying just the property values in the command.
\(\mathrm{q}=\) quantizer(struct), where struct is a structure whose field names are property names, sets the properties named in each field name with the values contained in the structure.
\(q=q u a n t i z e r(p n, p v)\) sets the named properties specified in the cell array of strings pn to the corresponding values in the cell array pv .

The quantizer object property values are listed below. These properties are described in detail in "quantizer Object Properties" on page 9-16.
\begin{tabular}{l|l|l}
\hline Property Name & Property Value & Description \\
\hline mode & 'double' & \begin{tabular}{l} 
Double-precision \\
mode. Override all \\
other parameters.
\end{tabular} \\
\hline & 'float' & \begin{tabular}{l} 
Custom-precision \\
floating-point mode.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Property Name & Property Value & Description \\
\hline & 'fixed' & \begin{tabular}{l} 
Signed fixed-point \\
mode.
\end{tabular} \\
\hline & 'single' & \begin{tabular}{l} 
Single-precision \\
mode. Override all \\
other parameters.
\end{tabular} \\
\hline roundmode & 'ufixed' & \begin{tabular}{l} 
Unsigned \\
fixed-point mode.
\end{tabular} \\
\hline & 'ceil' & \begin{tabular}{l} 
Round toward \\
positive infinity.
\end{tabular} \\
\hline & 'convergent' & \begin{tabular}{l} 
Convergent \\
rounding.
\end{tabular} \\
\hline & 'fix' & Round toward zero. \\
\hline 'floor' & \begin{tabular}{l} 
Round toward \\
negative infinity.
\end{tabular} \\
\hline & 'nearest' & \begin{tabular}{l} 
Round toward \\
nearest.
\end{tabular} \\
\hline \begin{tabular}{l} 
overflowmode (fixed-point \\
only)
\end{tabular} & 'saturate' & \begin{tabular}{l} 
Saturate on \\
overflow.
\end{tabular} \\
\hline & 'wrap ' & Wrap on overflow. \\
\hline format & \begin{tabular}{l} 
[wordlength \\
exponentlength]
\end{tabular} & \begin{tabular}{l} 
Format for fixed or \\
ufixed mode.
\end{tabular} \\
\hline & \begin{tabular}{l} 
[wordlength \\
exponentlength]
\end{tabular} & \begin{tabular}{l} 
Format for float \\
mode.
\end{tabular} \\
\hline
\end{tabular}

The default property values for a quantizer object are
```

mode = 'fixed';
roundmode = 'floor';
overflowmode = 'saturate';
format = [16 15];

```

Along with the preceding properties, quantizer objects have read-only states: max, min, noverflows, nunderflows, and noperations. They can be accessed through quantizer/get or q.maxlog, q.minlog, q. noverflows, q.nunderflows, and q.noperations, but they cannot be set. They are updated during the quantizer/quantize method, and are reset by the resetlog function.

The following table lists the read-only quantizer object states:
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline max & Maximum value before quantizing \\
\hline min & Minimum value before quantizing \\
\hline noverflows & Number of overflows \\
\hline nunderflows & Number of underflows \\
\hline noperations & Number of data points quantized \\
\hline
\end{tabular}

Examples The following example operations are equivalent.
Setting quantizer object properties by listing property values only in the command,
```

q = quantizer('fixed', 'ceil', 'saturate', [5 4])

```

Using a structure struct to set quantizer object properties,
```

struct.mode = 'fixed';
struct.roundmode = 'ceil';
struct.overflowmode = 'saturate';
struct.format = [5 4];
q = quantizer(struct);

```

\section*{quantizer}

Using property name and property value cell arrays pn and pv to set quantizer object properties,
```

pn = {'mode', 'roundmode', 'overflowmode', 'format'};
pv = {'fixed', 'ceil', 'saturate', [5 4]};
q = quantizer(pn, pv)

```

Using property name/property value pairs to configure a quantizer object,
```

q = quantizer('mode', fixed','roundmode','ceil',...
'overflowmode', 'saturate', 'format', [5 4]);

```

See Also
fi, fimath, fipref, numerictype, quantize, set, "quantizer Object Properties" on page 9-16

Purpose Create quiver or velocity plot
Description Refer to the MATLAB quiver reference page for more information.

\section*{quiver3}
Purpose Create 3-D quiver or velocity plot
Description Refer to the MATLAB quiver3 reference page for more information.
\begin{tabular}{|c|c|}
\hline Purpose & Generate a uniformly distributed, quantized random number using a quantizer object \\
\hline Syntax & ```
randquant(q, n)
randquant(q,m,n)
randquant(q,m,n,p,\ldots.)
randquant(q,[m,n])
randquant(q,[m,n,p,\ldots.])
``` \\
\hline \multirow[t]{6}{*}{Description} & randquant (\(q, n\)) uses quantizer object \(q\) to generate an \(n\)-by-n matrix with random entries whose values cover the range of \(q\) when \(q\) is a fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the \(n\)-by-n array with values covering the range \\
\hline & \begin{tabular}{l}
-[square root of realmax \((q)\)] to [square root of realmax(q)] \\
randquant (\(q, m, n\)) uses quantizer object \(q\) to generate an \(m\)-by-n matrix with random entries whose values cover the range of \(q\) when \(q\) is a fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the m-by-n array with values covering the range
\end{tabular} \\
\hline & -[square root of realmax (q)] to [square root of realmax (q)] \\
\hline & randquant (\(\mathrm{q}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \ldots\)) uses quantizer object q to generate an \(m\)-by-n-by-p-by ... matrix with random entries whose values cover the range of \(q\) when \(q\) is fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the matrix with values covering the range \\
\hline & -[square root of realmax (q)] to [square root of realmax (q)] \\
\hline & randquant (\(q,[m, n]\)) uses quantizer object \(q\) to generate an \(m\)-by- \(n\) matrix with random entries whose values cover the range of \(q\) when \(q\) is a fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the m-by-n array with values covering the range \\
\hline
\end{tabular}

\section*{randquant}
-[square root of realmax (q)] to [square root of realmax \((q)\)]
randquant (\(q,[m, n, p, \ldots]\)) uses quantizer object \(q\) to generate \(p\) \(m\)-by- \(n\) matrices containing random entries whose values cover the range of \(q\) when \(q\) is a fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the m-by-n arrays with values covering the range
```

-[square root of realmax(q)] to [square root of realmax(q)]

```
randquant produces pseudorandom numbers. The number sequence randquant generates during each call is determined by the state of the generator. Because MATLAB resets the random number generator state at startup, the sequence of random numbers generated by the function remains the same unless you change the state.
randquant works like rand in most respects, including the generator used, but it does not support the 'state' and 'seed ' options available in rand.

\section*{Examples}
```

q=quantizer([4 3]);
rand('state',0)
randquant(q,3)
ans =

0.7500	-0.1250	-0.2500
-0.6250	0.6250	-1.0000
0.1250	0.3750	0.5000

```

\section*{See Also}
quantizer, range, realmax

\section*{Purpose}

Return the numerical range of a fi object or quantizer object

\section*{Syntax}
```

range(a)
[min, max] = range(a)
r = range(q)
[min, max] = range(q)

```

Description range (a) returns the minimum and maximum possible values of fi object a in two-vector format. All possible quantized real-world values of a are in the range returned. If a is a complex number, then all possible values of real(a) and imag(a) are in the range returned.
[min, max] = range(a) returns the minimum and maximum values of fi object a in separate output variables.
\(r=\) range (q) returns the two-element row vector \(r=[a b]\) such that for all real \(x, \mathrm{y}=\) quantize \((\mathrm{q}, \mathrm{x})\) returns \(y\) in the range \(a \leq y \leq b\).
[min, max] = range(q) returns the minimum and maximum values of the range in separate output variables.

\section*{Examples}
```

q = quantizer('float',[6 3]);
r = range(q)
r =
-14 14
q = quantizer('fixed',[4 2],'floor');
[min,max] = range(q)
min =
-2
max =

```
 1.7500

Algorithm
If \(q\) is a floating-point quantizer object, \(a=-\operatorname{realmax}(q), b=\operatorname{realmax}(q)\). If \(q\) is a signed fixed-point quantizer object (datamode \(=\) 'fixed'),
\[
\begin{aligned}
& a=-\operatorname{realmax}(q)-\operatorname{eps}(q)=\frac{-2^{w-1}}{2^{f}} \\
& b=\operatorname{realmax}(q)=\frac{2^{w-1}-1}{2^{f}}
\end{aligned}
\]

If \(q\) is an unsigned fixed-point quantizer object (datamode = 'ufixed'),
\[
a=0
\]
\[
b=\operatorname{realmax}(q)=\frac{2^{w}-1}{2^{f}}
\]

See realmax for more information.
See Also
exponentmin, fractionlength, max, min, realmax, realmin

\section*{Purpose Return real part of complex number}

Description Refer to the MATLAB real reference page for more information.

Purpose Return the largest positive fixed-point value or quantized number

\section*{Syntax}
realmax (a)
realmax(q)
Description

Examples
```

q = quantizer('float',[6 3]);
x = realmax(q)
x =

```

14
Algorithm
If q is a floating-point quantizer object, the largest positive number, \(x\), is
\[
x=2^{E_{\max }} \cdot(2-e p s(q))
\]

If \(q\) is a signed fixed-point quantizer object, the largest positive number, \(x\), is
\[
x=\frac{2^{w-1}-1}{2^{f}}
\]

If \(q\) is an unsigned fixed-point quantizer object (datamode = 'ufixed'), the largest positive number, \(x\), is
\[
x=\frac{2^{w}-1}{2^{f}}
\]

See Also quantizer, realmin, exponentmin, fractionlength

Purpose

Syntax \(\quad \begin{aligned} & \text { realmin (a) } \\ & \text { realmin(q) }\end{aligned}\)

\section*{Examples}
```

q = quantizer('float',[6 3]);
realmin(q)
ans =
0.2500

```
Algorithm

If \(q\) is a floating-point quantizer object, \(x=2^{E_{\text {min }}}\)
where \(E_{\text {min }}=\) exponentmin \((q)\) is the minimum exponent.
If \(q\) is a signed or unsigned fixed-point quantizer object, \(x=2^{-f}=\varepsilon\) where \(f\) is the fraction length.

\section*{See Also}
\begin{tabular}{ll}
Purpose & Replicate and tile an array \\
Description & Refer to the MATLAB repmat reference page for more information.
\end{tabular}

\section*{Purpose Change the scaling of a fi object}
```

Syntax b = rescale (a, fractionlength)
b = rescale(a, slope, bias)
b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)
b = rescale(a, ..., PropertyName, PropertyValue, ...)

```

Description The rescale function acts similarly to the fi copy function with the following exceptions:
- The fi copy constructor preserves the real-world value, while rescale preserves the stored integer value.
- rescale does not allow the Signed and WordLength properties to be changed.

\section*{Examples}

In the following example, fi object \(a\) is rescaled to create \(f i\) object \(b\). The real-world values of \(a\) and \(b\) are different, while their stored integer values are the same:
```

p = fipref('FimathDisplay','none',...
'NumericTypeDisplay','short');
a = fi(10, 1, 8, 3)
a =
10
s8,3
b = rescale(a, 1)
b =

```
 40
```

            s8,1
    stored_integer_a = a.int;
stored_integer_b = b.int;
isequal(stored_integer_a, stored_integer_b)
ans =
1

```

See Also fi
\begin{tabular}{ll}
Purpose & Reset one or more objects to their initial conditions \\
Syntax & reset \((o b j)\) \\
Description & \begin{tabular}{l}
reset \((o b j)\) resets fi, fimath, fipref, or quantizer object obj to its \\
initial conditions.
\end{tabular}
\end{tabular}

See Also resetlog

Purpose Clear log for a fi or quantizer object
Syntax \(\quad\)\begin{tabular}{l}
resetlog(a) \\
resetlog(q)
\end{tabular}

Description
resetlog(a) clears the log for fi object a.
resetlog(q) clears the log for quantizer object \(q\).
Turn logging on or off by setting the fipref property LoggingMode.
See Also
fipref, maxlog, minlog, noperations, noverflows, nunderflows, reset

\section*{reshape}
\(\begin{array}{ll}\text { Purpose } & \text { Reshape array } \\ \text { Description } & \text { Refer to the MATLAB reshape reference page for more information. }\end{array}\)
\(\begin{array}{ll}\text { Purpose } & \text { Plot colormap } \\ \text { Description } & \text { Refer to the MATLAB rgbplot reference page for more information. }\end{array}\)
\begin{tabular}{ll}
Purpose & Create ribbon plot \\
Description & Refer to the MATLAB ribbon reference page for more information.
\end{tabular}
Purpose Create angle histogram

Description Refer to the MATLAB rose reference page for more information.

Purpose Round input data using a quantizer object without checking for overflow

\section*{Syntax round \((q, x)\)}

Description round \((q, x)\) uses the RoundMode and FractionLength settings of \(q\) to round the numeric data \(x\), but does not check for overflows during the operation. Compare to quantize.

Examples Create a quantizer object and use it to quantize input data. The quantizer object applies its properties to the input data to return quantized output.
```

q = quantizer('fixed', 'convergent', 'wrap', [3 2]);
x = (-2:eps(q)/4:2)';
y = round(q,x);
plot(x,[x,y],'.-'); axis square;

```

Applying quantizer object q to the data results in the staircase shape output plot shown here. Where the input data is linear, output y shows distinct quantization levels.

See Also
quantize, quantizer
Purpose Save fi preferences for the next MATLAB session
Syntax savefipref
Description savefipref saves the settings of the current fipref object for the next MATLAB session.
See Also fipref

Purpose Create a scatter or bubble plot
Description Refer to the MATLAB scatter reference page for more information.
Purpose Create a 3-D scatter or bubble plotDescription Refer to the MATLAB scatter3 reference page for more information.

Purpose Return signed decimal representation of stored integer of fi object as string

\section*{Syntax \\ sdec (a)}

Description
Fixed-point numbers can be represented as
\[
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
\]
or, equivalently,
real-world value \(=(\) slope \(\times\) stored integer \()+\) bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
\(\operatorname{sdec}(\mathrm{a})\) returns the stored integer of fi object a in signed decimal format as a string.

\section*{Examples The code}
```

    a = fi([-1 1],1,8,7);
    sdec(a)
    returns
-128 127

```
```

See Also

```
bin, dec, hex, int, oct
Purpose Create semilogarithmic plot with logarithmic x-axis
Description Refer to the MATLAB semilogx reference page for more information.

Purpose Create semilogarithmic plot with logarithmic y-axis
Description Refer to the MATLAB semilogy reference page for more information.
Purpose Set or display property values for quantizer objects
```

Syntax

```
```

set(q, PropertyValue1, PropertyValue2,...)

```
set(q, PropertyValue1, PropertyValue2,...)
set(q,s)
set(q,s)
set(q,pn,pv)
set(q,pn,pv)
set(q,'PropertyName1',PropertyValue1,'PropertyName2',
set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...)
PropertyValue2,...)
q.PropertyName = Value
q.PropertyName = Value
s = set(q)
```

s = set(q)

```

\section*{Description}
set (q, PropertyValue1, PropertyValue2,...) sets the properties of quantizer object \(q\). If two property values conflict, the last value in the list is the one that is set.
\(\operatorname{set}(q, s)\), where \(s\) is a structure whose field names are object property names, sets the properties named in each field name with the values contained in the structure.
set (\(\mathrm{q}, \mathrm{pn}, \mathrm{pv}\)) sets the named properties specified in the cell array of strings \(p n\) to the corresponding values in the cell array \(p v\).
set(q,'PropertyName1',PropertyValue1,'PropertyName2', PropertyValue2,...) sets multiple property values with a single statement. Note that you can use property name/property value string pairs, structures, and property name/property value cell array pairs in the same call to set.
q.PropertyName = Value uses dot notation to set property PropertyName to Value.
set (\(q\)) displays the possible values for all properties of quantizer object q.
\(s=\operatorname{set}(q)\) returns a structure containing the possible values for the properties of quantizer object \(q\).

\section*{See Also \\ get}

\section*{Purpose Perform signum function on array}

\section*{Syntax \\ \(c=\operatorname{sign}(a)\)}

Description
\(c=\operatorname{sign}(a)\) returns an array \(c\) the same size as \(a\), where each element of c is
- 1 if the corresponding element of a is greater than zero
- 0 if the corresponding element of a is zero
- - 1 if the corresponding element of a is less than zero

The elements of \(c\) are of data type int8.
sign does not support complex fi inputs.

Purpose Return the single-precision floating-point real-world value of a fi object

\section*{Syntax \\ single(a)}

Description
Fixed-point numbers can be represented as
\[
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
\]
or, equivalently,
real-world value \(=(\) slope \(\times\) stored integer \()+\) bias
single (a) returns the real-world value of a fi object in single-precision floating point.

\section*{See Also}
double

\section*{Purpose Return array dimensions}

Description Refer to the MATLAB size reference page for more information.
\begin{tabular}{ll}
Purpose & Create volumetric slice plot \\
Description & Refer to the MATLAB slice reference page for more information.
\end{tabular}

\section*{Purpose Visualize sparsity pattern}

Description Refer to the MATLAB spy reference page for more information.
Purpose Remove singleton dimensions

Description Refer to the MATLAB squeeze reference page for more information.

\section*{Purpose Create stairstep graph}

Description Refer to the MATLAB stairs reference page for more information.
\begin{tabular}{ll}
Purpose & Plot discrete sequence data \\
Description & Refer to the MATLAB stem reference page for more information.
\end{tabular}

\section*{Purpose Plot 3-D discrete sequence data}

Description Refer to the MATLAB stem3 reference page for more information.
\begin{tabular}{ll}
Purpose & Create a 3-D stream ribbon plot \\
Description & \begin{tabular}{l}
Refer to the MATLAB streamribbon reference page for more \\
information.
\end{tabular}
\end{tabular}

\author{
Purpose Draw streamlines in slice planes \\ Description Refer to the MATLAB streamslice reference page for more information.
}

Purpose Create a 3-D stream tube plot
Description Refer to the MATLAB streamtube reference page for more information.

Purpose Return the stored integer of a fi object
Syntax \(\quad\) I = stripscaling(a)
Description \(\quad\) I = stripscaling(a) returns the stored integer of a as a fi object with zero bias and the same word length and sign as a.

\section*{Purpose Subtract two objects using a fimath object}

\section*{Syntax \(\quad c=F . \operatorname{sub}(a, b)\)}

Description
\(c=F . \operatorname{sub}(a, b)\) subtracts objects \(a\) and \(b\) using fimath object \(F\). This is helpful in cases when you want to override the fimath objects of a and \(b\), or if the fimath objects of \(a\) and \(b\) are different.
\(a\) and \(b\) must have the same dimensions unless one is a scalar. If either \(a\) or \(b\) is scalar, then \(c\) has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numeric type, then the built-in object is cast to the word length of the fi object, preserving best-precision fraction length.

\section*{Examples}

In this example, \(c\) is the 32 -bit difference of \(a\) and \(b\) with fraction length 16.
```

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision',...
'SumWordLength',32,'SumFractionLength',16);
c = F.sub(a, b)
c =
0.4233
DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 32
FractionLength: 16
RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128

```

SumMode: SpecifyPrecision
SumWordLength: 32
SumFractionLength: 16
CastBeforeSum: true

\section*{Algorithm}
\[
\begin{aligned}
& c=F \cdot \operatorname{sub}(a, b) \text { is equivalent to } \\
& \text { a.fimath }=F ; \\
& \text { b.fimath }=F ; \\
& c=a-b ;
\end{aligned}
\]
except that the fimath properties of \(a\) and \(b\) are not modified when you use the functional form.

\section*{See Also}
add, divide, fi, fimath, mpy, numerictype

\section*{Purpose Subscripted assignment}

\section*{Syntax}
```

$\mathrm{a}(\mathrm{I})=\mathrm{b}$
$a(I, J)=b$
$a(I,:)=b$
$a(:, I)=b$
$a(I, J, K, \ldots)=b$
$a=\operatorname{subsasgn}(a, S, b)$

```

\section*{Description}
\(a(I)=b\) assigns the values of \(b\) into the elements of a specified by the subscript vector I. b must have the same number of elements as I or be a scalar.
\(a(I, J)=b\) assigns the values of \(b\) into the elements of the rectangular submatrix of a specified by the subscript vectors I and J. b must have LENGTH(I) rows and LENGTH(J) columns.

A colon used as a subscript, as in \(\mathrm{a}(\mathrm{I},:\)) \(=\mathrm{b}\) or \(\mathrm{a}(:, \mathrm{I})=\mathrm{b}\) indicates the entire column or row.

For multidimensional arrays, \(a(I, J, K, \ldots)=b\) assigns \(b\) to the specified elements of \(a . b\) must be length (I)-by-length (J)-by-length (K)-... or be shiftable to that size by adding or removing singleton dimensions.
\(a=\operatorname{subsasgn}(a, S, b)\) is called for the syntax \(a(i)=b, a\{i\}=b\), or \(a \cdot i=b\) when \(a\) is an object. \(S\) is a structure array with the fields
- type - String containing ' ()', '\{\}', or '.' specifying the subscript type
- subs - Cell array or string containing the actual subscripts

For instance, the syntax \(a(1: 2,:)=b\) calls \(a=\operatorname{subsasgn}(a, S, b)\) where \(S\) is a 1-by-1 structure with S.type='()' and S.subs = \{1:2,':'\}. A colon used as a subscript is passed as the string ': '.

\section*{See Also \\ subsref}
\begin{tabular}{ll}
Purpose & Subscripted reference \\
Description & Refer to the MATLAB subsref reference page for more information.
\end{tabular}

\section*{Purpose Return sum of array elements}
\[
\begin{array}{ll}
\text { Syntax } & \left.\begin{array}{l}
b=\operatorname{sum}(a) \\
b
\end{array}\right) \\
& =\operatorname{sum}(a, \operatorname{dim})
\end{array}
\]

Description

See Also
add, divide, fi, fimath, mpy, numerictype, sub
\begin{tabular}{ll}
Purpose & Create \(3-\) D shaded surface plot \\
Description & Refer to the MATLAB surf reference page for more information.
\end{tabular}

\section*{surfc}
\(\begin{array}{ll}\text { Purpose } & \text { Create 3-D shaded surface plot with contour plot } \\ \text { Description } & \text { Refer to the MATLAB surfc reference page for more information. }\end{array}\)
\(\begin{array}{ll}\text { Purpose } & \text { Create a surface plot with colormap-based lighting } \\ \text { Description } & \text { Refer to the MATLAB surfl reference page for more information. }\end{array}\)

Purpose Compute and display 3-D surface normals
Description Refer to the MATLAB surfnorm reference page for more information.

Purpose Create text object in current axes
Description Refer to the MATLAB text reference page for more information.

Purpose Return the result of element-by-element multiplication of fi objects

\section*{Syntax times \((a, b)\)}

Description times \((a, b)\) is called for the syntax 'a .* \(b\) ' when \(a\) or \(b\) is an object.
a. *b denotes element-by-element multiplication. a and b must have the same dimensions unless one is a scalar. A scalar can be multiplied into anything.
times does not support fi objects of data type Boolean.
See Also plus, minus, mtimes, uminus

Purpose Create Toeplitz matrix
Syntax
\(\mathrm{t}=\) toeplitz(\(\mathrm{a}, \mathrm{b}\))
\(\mathrm{t}=\) toeplitz(b)

Description
\(\mathrm{t}=\) toeplitz (a, b) returns a nonsymmetric Toeplitz matrix having a as its first column and \(b\) as its first row. \(b\) is cast to the numerictype of \(a\). \(\mathrm{t}=\) toeplitz(b) returns the symmetric or Hermitian Toeplitz matrix formed from vector \(b\), where \(b\) is the first row of the matrix.

The numerictype and fimath objects of the leftmost input that is a fi object are applied to the output t .

Purpose Convert a quantizer object to a string
Syntax \(\quad s=\) tostring (q)
Description \(s=\) tostring(q) converts quantizer object q to a string s. After converting \(q\) to a string, the function eval(s) can use \(s\) to create a quantizer object with the same properties as \(q\).

See Also quantizer

\section*{Purpose Return the transpose}

Description Refer to the MATLAB arithmetic operators reference page for more information.

\section*{treeplot}
Purpose Plot picture of tree
Description Refer to the MATLAB treeplot reference page for more information.

Purpose Return the lower triangular part of a matrix
Description Refer to the MATLAB tril reference page for more information.
Purpose Create triangular mesh plotDescription Refer to the MATLAB trimesh reference page for more information.

\section*{Purpose Create 2-D triangular plot}

Description Refer to the MATLAB triplot reference page for more information.
Purpose Create triangular surface plotDescription Refer to the MATLAB trisurf reference page for more information.

\section*{Purpose Return the upper triangular part of a matrix}

Description Refer to the MATLAB triu reference page for more information.

Purpose \(\quad\) Return the stored integer value of a fi object as a built-in uint8

\section*{Syntax \\ uint8(a)}

Description Fixed-point numbers can be represented as
\[
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
\]
or, equivalently,
real-world value \(=(\) slope \(\times\) stored integer \()+\) bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
uint8(a) returns the stored integer value of fi object a as a built-in uint8. If the stored integer word length is too big for a uint8, or if the stored integer is signed, the returned value saturates to a uint8.

See Also int, int8, int16, int32, uint16, uint32

Purpose Return the stored integer value of a fi object as a built-in uint16

\section*{Syntax uint16(a)}

Description Fixed-point numbers can be represented as
\[
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
\]
or, equivalently,
real-world value \(=(\) slope \(\times\) stored integer \()+\) bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
uint16(a) returns the stored integer value of fi object a as a built-in uint16. If the stored integer word length is too big for a uint16, or if the stored integer is signed, the returned value saturates to a uint16.

See Also int, int8, int16, int32, uint8, uint32

Purpose Return the stored integer value of a fi object as a built-in uint32

\section*{Syntax uint32(a)}

Description Fixed-point numbers can be represented as
\[
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
\]
or, equivalently,
real-world value \(=(\) slope \(\times\) stored integer \()+\) bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
uint32 (a) returns the stored integer value of fi object a as a built-in uint32. If the stored integer word length is too big for a uint32, or if the stored integer is signed, the returned value saturates to a uint32.

See Also int, int8, int16, int32, uint8, uint16

Purpose Negate the elements of a fi object array

\section*{Syntax uminus (a)}

Description uminus (a) is called for the syntax ' - a' when a is an object. -a negates the elements of a.
uminus does not support fi objects of data type Boolean.
See Also plus, minus, mtimes, times

\section*{uplus}
Purpose Unary plus
Description Refer to the MATLAB arithmetic operators reference page for more information.

Purpose Return upper bound of range of fi object

\section*{Syntax upperbound (a)}

Description upperbound (a) returns the upper bound of the range of \(f i\) object a. If \(L\) \(=\) lowerbound(a) and \(U=\) upperbound \((a)\), then \([L, U]=\) range \((a)\).

See Also lowerbound, range

\section*{Purpose Vertically concatenate two or more fi objects}
```

Syntax
$c=\operatorname{vertcat}(a, b, \ldots)$
[a; b; ...]
[a;b]

```
\(c=\operatorname{vertcat}(a, b, \ldots)\) is called for the syntax \([a ; b ; \ldots]\) when any of \(a, b, \ldots\), is a fi object.
[\(a ; b\)] is the vertical concatenation of matrices \(a\) and \(b\). a and \(b\) must have the same number of columns. Any number of matrices can be concatenated within one pair of brackets. N-D arrays are vertically concatenated along the first dimension. The remaining dimensions must match.

Horizontal and vertical concatenation can be combined, as in [1 \(2 ; 34]\).
[ab;c] is allowed if the number of rows of a equals the number of rows of \(b\), and if the number of columns of a plus the number of columns of \(b\) equals the number of columns of \(c\).

The matrices in a concatenation expression can themselves be formed via a concatenation, as in [a b; [c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi objects \(c\) are taken from the leftmost fi object in the list (\(a, b, \ldots\)).

\section*{See Also horzcat}

\section*{Purpose Create Voronoi diagram}

Description Refer to the MATLAB voronoi reference page for more information.

Purpose Create n-dimensional Voronoi diagram
Description Refer to the MATLAB voronoin reference page for more information.
\begin{tabular}{ll}
Purpose & Create waterfall plot \\
Description & Refer to the MATLAB waterfall reference page for more information.
\end{tabular}

Purpose Return the word length of a quantizer object

\section*{Syntax wordlength (q)}

Description
wordlength (\(q\)) returns the word length of the quantizer object \(q\).

\section*{Examples}
q = quantizer([16 15]); wordlength(q)
ans \(=\)

16
See Also
fi, fractionlength, exponentlength, numerictype, quantizer

\section*{Purpose Set or query x-axis limits}

Description Refer to the MATLAB xlim reference page for more information.

\section*{Purpose Set or query y-axis limits}

Description Refer to the MATLAB ylim reference page for more information.

\section*{Purpose Set or query z-axis limits}

Description Refer to the MATLAB zlim reference page for more information.

This glossary defines terms related to fixed-point data types and numbers. These terms may appear in some or all of the documents that describe products from The MathWorks that have fixed-point support.

\section*{arithmetic shift}

Shift of the bits of a binary word for which the sign bit is recycled for each bit shift to the right. A zero is incorporated into the least significant bit of the word for each bit shift to the left. In the absence of overflows, each arithmetic shift to the right is equivalent to a division by 2 , and each arithmetic shift to the left is equivalent to a multiplication by 2 .

See also binary point, binary word, bit, logical shift, most significant bit

\section*{bias}

Part of the numerical representation used to interpret a fixed-point number. Along with the slope, the bias forms the scaling of the number. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractionalslope } \times 2^{\text {exponent }}
\]

See also fixed-point representation, fractional slope, integer, scaling, slope, [Slope Bias]

\section*{binary number}

Value represented in a system of numbers that has two as its base and that uses 1's and 0's (bits) for its notation.

See also bit

\section*{binary point}

Symbol in the shape of a period that separates the integer and fractional parts of a binary number. Bits to the left of the binary point are integer bits and/or sign bits, and bits to the right of the binary point are fractional bits.

See also binary number, bit, fraction, integer, radix point

\section*{binary point-only scaling}

Scaling of a binary number that results from shifting the binary point of the number right or left, and which therefore can only occur by powers of two

See also binary number, binary point, scaling

\section*{binary word}

Fixed-length sequence of bits (1's and 0's). In digital hardware, numbers are stored in binary words. The way in which hardware components or software functions interpret this sequence of 1's and 0's is described by a data type.

See also bit, data type, word
bit
Smallest unit of information in computer software or hardware. A bit can have the value 0 or 1 .

\section*{ceiling (round toward)}

Rounding mode that rounds to the closest representable number in the direction of positive infinity. This is equivalent to the ceil mode in Fixed-Point Toolbox.

See also convergent rounding, floor (round toward), nearest (round toward), rounding, truncation, zero (round toward)

\section*{contiguous binary point}

Binary point that occurs within the word length of a data type. For example, if a data type has four bits, its contiguous binary point must be understood to occur at one of the following five positions:
. 0000
0.000
00.00
000.0
0000.

Glossary-2

See also data type, noncontiguous binary point, word length

\section*{convergent rounding}

Rounding mode that rounds to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 0 .

See also ceiling (round toward), floor (round toward), nearest (round toward), rounding, truncation, zero (round toward)

\section*{data type}

Set of characteristics that define a group of values. A fixed-point data type is defined by its word length, its fraction length, and whether it is signed or unsigned. A floating-point data type is defined by its word length and whether it is signed or unsigned.

See also fixed-point representation, floating-point representation, fraction length, word length

\section*{data type override}

Parameter in the Fixed-Point Settings interface that allows you to set the output data type and scaling of fixed-point blocks on a system or subsystem level.

See also data type, scaling

\section*{exponent}

Part of the numerical representation used to express a floating-point or fixed-point number.
1. Floating-point numbers are typically represented as
\[
\text { real-world value }=\text { mantissa } \times 2^{\text {exponent }}
\]
2. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
```

slope $=$ fractionalslope $\times 2^{\text {exponent }}$

```

The exponent of a fixed-point number is equal to the negative of the fraction length:
```

exponent =-1\timesfraction length

```

See also bias, fixed-point representation, floating-point representation, fraction length, fractional slope, integer, mantissa, slope

\section*{fixed-point representation}

Method for representing numerical values and data types that have a set range and precision.
1. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractionalslope } \times 2^{\text {exponent }}
\]

The slope and the bias together represent the scaling of the fixed-point number.
2. Fixed-point data types can be defined by their word length, their fraction length, and whether they are signed or unsigned.

See also bias, data type, exponent, fraction length, fractional slope, integer, precision, range, scaling, slope, word length

\section*{floating-point representation}

Method for representing numerical values and data types that can have changing range and precision.
1. Floating-point numbers can be represented as
\[
\text { real-world value }=\text { mantissa } \times 2^{\text {exponent }}
\]
2. Floating-point data types are defined by their word length.

\section*{Glossary-4}

See also data type, exponent, mantissa, precision, range, word length

\section*{floor (round toward)}

Rounding mode that rounds to the closest representable number in the direction of negative infinity.

See also ceiling (round toward), convergent rounding, nearest (round toward), rounding, truncation, zero (round toward)

\section*{fraction}

Part of a fixed-point number represented by the bits to the right of the binary point. The fraction represents numbers that are less than one.

See also binary point, bit, fixed-point representation

\section*{fraction length}

Number of bits to the right of the binary point in a fixed-point representation of a number.

See also binary point, bit, fixed-point representation, fraction

\section*{fractional slope}

Part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractionalslope } \times 2^{\text {exponent }}
\]

The term slope adjustment is sometimes used as a synonym for fractional slope.

See also bias, exponent, fixed-point representation, integer, slope

\section*{guard bits}

Extra bits in either a hardware register or software simulation that are added to the high end of a binary word to ensure that no information is lost in case of overflow.

See also binary word, bit, overflow

\section*{integer}
1. Part of a fixed-point number represented by the bits to the left of the binary point. The integer represents numbers that are greater than or equal to one.
2. Also called the "stored integer." The raw binary number, in which the binary point is assumed to be at the far right of the word. The integer is part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as
\[
\text { real-world value }=2^{- \text {fraction length }} \times \text { integer }
\]
or
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractionalslope } \times 2^{\text {exponent }}
\]

See also bias, fixed-point representation, fractional slope, integer, real-world value, slope

\section*{integer length}

Number of bits to the left of the binary point in a fixed-point representation of a number.

See also binary point, bit, fixed-point representation, fraction length, integer

\section*{least significant bit (LSB)}

Bit in a binary word that can represent the smallest value. The LSB is the rightmost bit in a big-endian-ordered binary word. The weight of the LSB is related to the fraction length according to
\[
\text { weight of } L S B=2^{\text {-fraction length }}
\]

\section*{Glossary-6}

See also big-endian, binary word, bit, most significant bit

\section*{logical shift}

Shift of the bits of a binary word, for which a zero is incorporated into the most significant bit for each bit shift to the right and into the least significant bit for each bit shift to the left.

See also arithmetic shift, binary point, binary word, bit, most significant bit

\section*{mantissa}

Part of the numerical representation used to express a floating-point number. Floating-point numbers are typically represented as
\[
\text { real-world value }=\text { mantiss } a \times 2^{\text {exponent }}
\]

See also exponent, floating-point representation

\section*{most significant bit (MSB)}

Bit in a binary word that can represent the largest value. The MSB is the leftmost bit in a big-endian-ordered binary word.

See also binary word, bit, least significant bit

\section*{nearest (round toward)}

Rounding mode that rounds to the closest representable number, with the exact midpoint rounded to the closest representable number in the direction of positive infinity. This is equivalent to the nearest mode in Fixed-Point Toolbox.

See also ceiling (round toward), convergent rounding, floor (round toward), rounding, truncation, zero (round toward)

\section*{noncontiguous binary point}

Binary point that is understood to fall outside the word length of a data type. For example, the binary point for the following 4 -bit word is understood to occur two bits to the right of the word length,

0000 \(\qquad\)
thereby giving the bits of the word the following potential values:
\(2^{5} 2^{4} 2^{3} 2^{2}\) _ .
See also binary point, data type, word length

\section*{one's complement representation}

Representation of signed fixed-point numbers. Negating a binary number in one's complement requires a bitwise complement. That is, all 0's are flipped to 1's and all 1's are flipped to 0's. In one's complement notation there are two ways to represent zero. A binary word of all 0 's represents "positive" zero, while a binary word of all 1's represents "negative" zero.

See also binary number, binary word, sign/magnitude representation, signed fixed-point, two's complement representation

\section*{overflow}

Situation that occurs when the magnitude of a calculation result is too large for the range of the data type being used. In many cases you can choose to either saturate or wrap overflows.

See also saturation, wrapping

\section*{padding}

Extending the least significant bit of a binary word with one or more zeros.

See also least significant bit

\section*{precision}
1. Measure of the smallest numerical interval that a fixed-point data type and scaling can represent, determined by the value of the number's least significant bit. The precision is given by the slope, or the number of fractional bits. The term resolution is sometimes used as a synonym for this definition.
2. Measure of the difference between a real-world numerical value and the value of its quantized representation. This is sometimes called quantization error or quantization noise.

See also data type, fraction, least significant bit, quantization, quantization error, range, slope

\section*{Glossary-8}

\section*{Q format}

Representation used by Texas Instruments to encode signed two's complement fixed-point data types. This fixed-point notation takes the form

Qm.n
where
- \(Q\) indicates that the number is in Q format.
- \(m\) is the number of bits used to designate the two's complement integer part of the number.
- \(n\) is the number of bits used to designate the two's complement fractional part of the number, or the number of bits to the right of the binary point.

In Q format notation, the most significant bit is assumed to be the sign bit.

See also binary point, bit, data type, fixed-point representation, fraction, integer, two's complement

\section*{quantization}

Representation of a value by a data type that has too few bits to represent it exactly.

See also bit, data type, quantization error

\section*{quantization error}

Error introduced when a value is represented by a data type that has too few bits to represent it exactly, or when a value is converted from one data type to a shorter data type. Quantization error is also called quantization noise.

See also bit, data type, quantization

\section*{radix point}

Symbol in the shape of a period that separates the integer and fractional parts of a number in any base system. Bits to the left of the radix point
are integer and/or sign bits, and bits to the right of the radix point are fraction bits.

See also binary point, bit, fraction, integer, sign bit

\section*{range}

Span of numbers that a certain data type can represent.

See also data type, precision

\section*{real-world value}

Stored integer value with fixed-point scaling applied. Fixed-point numbers can be represented as
\[
\text { real-world value }=2^{\text {-fraction length }} \times \text { integer }
\]
or
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractionalslope } \times 2^{\text {exponent }}
\]

See also integer

\section*{resolution}

See precision

\section*{rounding}

Limiting the number of bits required to express a number. One or more least significant bits are dropped, resulting in a loss of precision. Rounding is necessary when a value cannot be expressed exactly by the number of bits designated to represent it.

See also bit, ceiling (round toward), convergent rounding, floor (round toward), least significant bit, nearest (round toward), precision, truncation, zero (round toward)

\section*{saturation}

Method of handling numeric overflow that represents positive overflows as the largest positive number in the range of the data type being used, and negative overflows as the largest negative number in the range.

See also overflow, wrapping

\section*{scaling}
1. Format used for a fixed-point number of a given word length and signedness. The slope and bias together form the scaling of a fixed-point number.
2. Changing the slope and/or bias of a fixed-point number without changing the stored integer.

See also bias, fixed-point representation, integer, slope

\section*{shift}

Movement of the bits of a binary word either toward the most significant bit ("to the left") or toward the least significant bit ("to the right"). Shifts to the right can be either logical, where the spaces emptied at the front of the word with each shift are filled in with zeros, or arithmetic, where the word is sign extended as it is shifted to the right.

See also arithmetic shift, logical shift, sign extension

\section*{sign bit}

Bit (or bits) in a signed binary number that indicates whether the number is positive or negative.

See also binary number, bit

\section*{sign extension}

Addition of bits that have the value of the most significant bit to the high end of a two's complement number. Sign extension does not change the value of the binary number.

See also binary number, guard bits, most significant bit, two's complement representation, word

\section*{sign/magnitude representation}

Representation of signed fixed-point or floating-point numbers. In sign/magnitude representation, one bit of a binary word is always the dedicated sign bit, while the remaining bits of the word encode the magnitude of the number. Negation using sign/magnitude representation consists of flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0 .

See also binary word, bit, fixed-point representation, floating-point representation, one's complement representation, sign bit, signed fixed-point, two's complement representation

\section*{signed fixed-point}

Fixed-point number or data type that can represent both positive and negative numbers.

See also data type, fixed-point representation, unsigned fixed-point

\section*{slope}

Part of the numerical representation used to express a fixed-point number. Along with the bias, the slope forms the scaling of a fixed-point number. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractionalslope } \times 2^{\text {exponent }}
\]

See also bias, fixed-point representation, fractional slope, integer, scaling, [Slope Bias]

\section*{slope adjustment}

See fractional slope

\section*{[Slope Bias]}

Representation used to define the scaling of a fixed-point number.
See also bias, scaling, slope

\section*{stored integer}

See integer

\section*{trivial scaling}

Scaling that results in the real-world value of a number being simply equal to its stored integer value:
```

real-world value = integer

```

In [Slope Bias] representation, fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]

In the trivial case, slope \(=1\) and bias \(=0\).
In terms of binary point-only scaling, the binary point is to the right of the least significant bit for trivial scaling, meaning that the fraction length is zero:
\[
\text { real-world value }=\text { integer } \times 2^{- \text {fraction length }}=\text { integer } \times 2^{0}
\]

Scaling is always trivial for pure integers, such as int8, and also for the true floating-point types single and double.

See also bias, binary point, binary point-only scaling, fixed-point representation, fraction length, integer, least-significant bit, scaling, slope, [Slope Bias]

\section*{truncation}

Rounding mode that drops one or more least significant bits from a number.

See also ceiling (round toward), convergent rounding, floor (round toward), nearest (round toward), rounding, zero (round toward)

\section*{two's complement representation}

Common representation of signed fixed-point numbers. Negation using signed two's complement representation consists of a translation into one's complement followed by the binary addition of a one.

See also binary word, one's complement representation, sign/magnitude representation, signed fixed-point

\section*{unsigned fixed-point}

Fixed-point number or data type that can only represent numbers greater than or equal to zero.

See also data type, fixed-point representation, signed fixed-point

\section*{word}

Fixed-length sequence of binary digits (1's and 0's). In digital hardware, numbers are stored in words. The way hardware components or software functions interpret this sequence of 1's and 0's is described by a data type.

See also binary word, data type

\section*{word length}

Number of bits in a binary word or data type.
See also binary word, bit, data type

\section*{wrapping}

Method of handling overflow. Wrapping uses modulo arithmetic to cast a number that falls outside of the representable range the data type being used back into the representable range.

See also data type, overflow, range, saturation

\section*{zero (round toward)}

Rounding mode that rounds to the closest representable number in the direction of zero. This is equivalent to the fix mode in Fixed-Point Toolbox.

See also ceiling (round toward), convergent rounding, floor (round toward), nearest (round toward), rounding, truncation

\section*{A}
abs function 11-2
add function 11-5
all function 11-7
and function 11-8
ANSI C
compared with fi objects 2-20
any function 11-9
area function 11-10
arithmetic operations
fixed-point 2-8

\section*{B}
bar function 11-11
barh function 11-12
Bias property 9-12
bin function 11-13
bin property 9-2
bin2num function 11-14
binary conversions 2-23
bitand function 11-16
bitcmp function 11-17
bitget function 11-18
bitor function 11-19
bitset function 11-20
bitshift function 11-21
bitxor function 11-22
buffer function 11-23

\section*{C}

CastBeforeSum property 9-5
casts
fixed-point 2-16
clabel function 11-24
comet function 11-25
comet3 function 11-26
compass function 11-27
complex function 11-28
complex multiplication
fixed-point 2-11
coneplot function 11-29
conj function 11-30
contour function 11-31
contour3 function 11-32
contourc function 11-33
contourf function 11-34
convergent function 11-35
copyobj function 11-36
ctranspose function 11-37

\section*{D}

Data property 9-2
DataType property 9-12
DataTypeMode property 9-12
dec function 11-38
demos 1-7
denormalmax function 11-39
denormalmin function 11-40
diag function 11-41
disp function 11-42
display preferences setting 5-5
display settings 1-5
div function 11-43
double function 11-46
double property 9-2
doubles override 5-12

\section*{E}

Embedded MATLAB
Fixed-Point Toolbox support 8-11
using with Model Explorer and fixed-point models 8-16
end function 11-47
eps function 11-48
eq function 11-49
errorbar function 11-50
etreeplot function 11-51
exponentbias function \(11-52\)
exponentlength function 11-53
exponentmax function \(11-54\)
exponentmin function 11-55
ezcontour function 11-56
ezcontourf function 11-57
ezmesh function 11-58
ezplot function 11-59
ezplot3 function 11-60
ezpolar function 11-61
ezsurf function 11-62
ezsurfc function 11-63

\section*{F}
feather function 11-64
fi function 11-65
fi objects
constructing 3-2
properties
bin 9-2
Data 9-2
double 9-2
hex 9-3
int 9-3
NumericType 9-3
oct 9-4
fimath function 11-72
fimath objects 2-13
constructing 4-2
properties
CastBeforeSum 9-5
MaxProductWordLength 9-5
MaxSumWordLength 9-5
OverflowMode 9-5
ProductFractionLength 9-6
ProductMode 9-6
ProductWordLength 9-7
RoundMode 9-7
setting in the Model Explorer 4-6
SumFractionLength 9-8
SumMode 9-8
SumWordLength 9-9
setting properties in the Model
Explorer 4-6
fimath property 9-2
FimathDisplay property 9-10
fiobjects
properties
fimath 9-2
fipref function 11-75
fipref objects
constructing 5-2
properties
FimathDisplay 9-10
LoggingMode 9-10
NumberDisplay 9-11
NumericTypeDisplay 9-11
fixed-point data
reading from workspace 8-2
writing to workspace \(8-2\)
fixed-point data types
addition 2-10
arithmetic operations 2-8
casts 2-16
complex multiplication 2-11
modular arithmetic 2-8
multiplication 2-11
overflow handling 2-5
precision 2-5

Index-2
range 2-5
rounding 2-6
saturation 2-5
scaling 2-4
subtraction 2-10
two's complement 2-9
wrapping 2-5
fixed-point models
Embedded MATLAB support 8-11
fixed-point run-time API 8-6
fixed-point signal logging 8-6
Fixed-Point Toolbox
Embedded MATLAB support 8-11
FixedExponent property 9-13
format
rat 9-11
Format property 9-16
fplot function 11-77
fractionlength function 11-78
FractionLength property 9-14
function
line 11-119
functions
abs 11-2
add 11-5
all 11-7
and 11-8
any 11-9
area 11-10
bar 11-11
barh 11-12
bin 11-13
bin2num 11-14
bitand 11-16
bitcmp 11-17
bitget 11-18
bitor 11-19
bitset 11-20
bitshift 11-21
bitxor 11-22
buffer 11-23
clabel 11-24
comet 11-25
comet3 11-26
compass 11-27
complex 11-28
coneplot 11-29
conj 11-30
contour 11-31
contour3 11-32
contourc 11-33
contourf 11-34
convergent 11-35
copyobj 11-36
ctranspose 11-37
dec 11-38
denormalmax 11-39
denormalmin 11-40
diag 11-41
disp 11-42
div 11-43
double 11-46
end 11-47
eps 11-48
eq \(11-49\)
errorbar 11-50
etreeplot 11-51
exponentbias 11-52
exponentlength 11-53
exponentmax 11-54
exponentmin 11-55
ezcontour 11-56
ezcontourf 11-57
ezmesh 11-58
ezplot 11-59
ezplot3 11-60
ezpolar 11-61
ezsurf 11-62
ezsurfc 11-63
feather 11-64
fi 11-65
fimath 11-72
fipref 11-75
fplot 11-77
fractionlength 11-78
ge 11-79
get 11-80
gplot 11-81
gt 11-82
hankel 11-83
hex 11-84
hex2num 11-85
hist 11-86
histc 11-87
horzcat 11-88
imag 11-89
inspect 11-91
int 11-92
int16 11-95
int32 11-96
int8 11-94
intmax 11-97
intmin 11-98
ipermute 11-99
iscolumn 11-100
isempty \(11-101\)
isequal 11-102
isfi 11-103
isfinite 11-105
isinf 11-106
isnan 11-107
isnumeric 11-108
isobject 11-110
isreal 11-112
isrow 11-113
isscalar 11-114
issigned 11-115
isvector 11-116
le 11-117
length 11-118
logical 11-120
loglog 11-121
lowerbound 11-122
lsb 11-123
lt 11-124
\(\max 11-125\)
maxlog 11-126
mesh 11-127
meshc 11-128
meshz 11-129
min 11-130
minlog 11-131
minus 11-132
mpy 11-133
mtimes 11-135
ndims 11-136
ne 11-137
noperations 11-138
not 11-139
noverflows 11-140
num2bin 11-141
num2hex 11-142
num2int 11-144
numberofelements 11-145
numerictype 11-146
nunderflows 11-150
oct 11-151
or 11-152
patch 11-153
pcolor 11-154
permute 11-155
plot 11-156
plot3 11-157
plotmatrix 11-158
plotyy 11-159
plus 11-160
polar 11-161
pow2 11-162
quantize 11-164
quantizer 11-167
quiver 11-171
quiver3 11-172
randquant 11-173
range 11-175
real 11-177
realmax 11-178
realmin 11-180
repmat 11-181
reset 11-184
resetlog 11-185
reshape 11-186
rgbplot 11-187
ribbon 11-188
rose 11-189
round 11-190
savefipref 11-192
scatter 11-193
scatter3 11-194
sdec 11-195
semilogx 11-196
semilogy 11-197
set \(11-198\)
sign 11-199
single 11-200
size 11-201
slice 11-202
spy 11-203
squeeze 11-204
stairs 11-205
stem 11-206
stem3 11-207
streamribbon 11-208
streamslice 11-209
streamtube 11-210
stripscaling 11-211
sub 11-212
subsasgn 11-214
subsref 11-215
sum 11-216
surf 11-217
surfc 11-218
surfl 11-219
surfnorm 11-220
text 11-221
times 11-222
toeplitz 11-223
tostring 11-224
transpose 11-225
treeplot 11-226
tril 11-227
trimesh 11-228
triplot 11-229
trisurf 11-230
triu 11-231
uint16 11-233
uint32 11-234
uint8 11-232
uminus 11-235
uplus 11-236
upperbound 11-237
vertcat \(11-238\)
voronoi 11-239
voronoin 11-240
waterfall 11-241
wordlength 11-242
xlim 11-243
ylim 11-244
zlim 11-245

\section*{G}
ge function 11-79
get function 11-80
gplot function 11-81
gt function 11-82

\section*{H}
hankel function 11-83
help
getting 1-3
hex function 11-84
hex property 9-3
hex2num function 11-85
hist function 11-86
histc function 11-87
horzcat function 11-88

\section*{I}
imag function 11-89
inspect function 11-91
int function 11-92
int property 9-3
int16 function 11-95
int32 function 11-96
int8 function 11-94
interoperability
fi objects with Filter Design Toolbox 8-29
fi objects with Signal Processing Blockset 8-7
fi objects with Simulink 8-2
Fixed-Point Toolbox with Embedded MATLAB 8-11
intmax function \(11-97\)
intmin function 11-98
ipermute function \(11-99\)
iscolumn function 11-100
isempty function \(11-101\)
isequal function 11-102
isfi function 11-103
isfinite function 11-105
isinf function 11-106
isnan function 11-107
isnumeric function 11-108
isobject function \(11-110\)
isreal function \(11-112\)
isrow function 11-113
isscalar function \(11-114\)
issigned function 11-115
isvector function 11-116

\section*{\(L\)}
le function 11-117
length function \(11-118\)
line function 11-119
logging
overflows and underflows 5-7
logging modes
setting 5-7
LoggingMode property \(9-10\)
logical function 11-120
loglog function 11-121
lowerbound function 11-122
lsb function 11-123
lt function 11-124

\section*{M}
max function 11-125
maxlog function 11-126
MaxProductWordLength property 9-5
MaxSumWordLength property 9-5
mesh function 11-127
meshc function 11-128
meshz function 11-129
min function 11-130
minlog function 11-131
minus function 11-132
Mode property 9-16
Model Explorer
setting embedded.fimath properties 4-6
setting embedded.numerictype properties 6-7
using with fixed-point Embedded MATLAB 8-16
modular arithmetic 2-8
mpy function 11-133
mtimes function 11-135

\section*{Index-6}
multiplication fixed-point 2-11

\section*{N}
ndims function 11-136
ne function 11-137
nopnerations function 11-138
not function 11-139
noverflows function 11-140
num2bin function 11-141
num2hex function 11-142
num2int function 11-144
NumberDisplay property 9-11
numberofelements function 11-145
numerictype function 11-146
numerictype objects constructing 6-2
properties
Bias 9-12
DataType 9-12
DataTypeMode 9-12
FixedExponent 9-13
FractionLength 9-14
Scaling 9-14
setting in the Model Explorer 6-7
Signed 9-14
Slope 9-14
SlopeAdjustmentFactor 9-15
WordLength 9-15
setting properties in the Model
Explorer 6-7
NumericType property 9-3
NumericTypeDisplay property 9-11
nunderflows function 11-150

\section*{0}
oct function 11-151
oct property 9-4
one's complement 2-10
or function 11-152
overflow handling 2-5
compared with ANSI C 2-25
OverflowMode property 9-5 9-17
overflows
logging 5-7

\section*{P}
padding 2-17
patch function 11-153
pcolor function 11-154
permute function \(11-155\)
plot function 11-156
plot3 function 11-157
plotmatrix function 11-158
plotyy function 11-159
plus function 11-160
polar function 11-161
pow2 function 11-162
precision
fixed-point data types 2-5
ProductFractionLength property 9-6
ProductMode property 9-6
ProductWordLength property 9-7
properties
Bias, numerictype objects 9-12
bin, fi objects 9-2
CastBeforeSum, fimath objects 9-5
Data, fi objects 9-2
DataType, numerictype objects 9-12
DataTypeMode, numerictype objects 9-12
double, fi objects 9-2
fimath, fi objects 9-2
FimathDisplay, fipref objects 9-10
FixedExponent, numerictype objects 9-13
Format, quantizers 9-16
FractionLength, numerictype objects 9-14
hex, fi objects 9-3
int, fi objects 9-3
LoggingMode, fipref objects 9-10
MaxProductWordLength, fimathobjects 9-5
MaxSumWordLength, fimath objects 9-5
Mode, quantizers 9-16
NumberDisplay, fipref objects 9-11
NumericType, fi objects 9-3
NumericTypeDisplay, fipref objects 9-11
oct, fi objects 9-4
OverflowMode, fimath objects 9-5
OverflowMode, quantizers 9-17
ProductFractionLength, fimath objects 9-6
ProductMode, fimath objects 9-6
ProductWordLength, fimath objects 9-7
RoundMode, fimath objects 9-7
RoundMode, quantizers 9-18
Scaling, numerictype objects 9-14
Signed, numerictype objects 9-14
Slope, numerictype objects 9-14
SlopeAdjustmentFactor, numerictype objects 9-15
SumFractionLength, fimath objects 9-8
SumMode, fimath objects 9-8
SumWordLength, fimath objects 9-9
WordLength, numerictype objects 9-15
property values
quantizer objects 7-4

\section*{Q}
quantize function 11-164
quantizer function 11-167
quantizer objects
constructing 7-2
property values 7-4
quantizers
properties
Format 9-16
Mode 9-16
OverflowMode 9-17
RoundMode 9-18
quiver function 11-171
quiver3 function 11-172

\section*{R}
randquant function 11-173
range
fixed-point data types 2-5
range function 11-175
rat format 9-11
reading fixed-point data from workspace 8-2
real function 11-177
realmax function 11-178
realmin function 11-180
repmat function 11-181
reset function 11-184
resetlog function 11-185
reshape function 11-186
rgbplot function 11-187
ribbon function 11-188
rose function 11-189
round function 11-190
rounding
fixed-point data types 2-6
RoundMode property 9-7 9-18
run-time API
fixed-point data 8-6

\section*{S}
saturation 2-5
savefipref function 11-192
scaling 2-4
Scaling property 9-14
scatter function 11-193

\section*{Index-8}
scatter3 function 11-194
sdec function 11-195
semilogx function \(11-196\)
semilogy function 11-197
set function 11-198
sign function 11-199
signal logging
fixed-point 8-6
Signed property 9-14
single function 11-200
size function 11-201
slice function 11-202
Slope property 9-14
SlopeAdjustmentFactor property 9-15
spy function 11-203
squeeze function 11-204
stairs function 11-205
stem function 11-206
stem3 function 11-207
streamribbon function 11-208
streamslice function 11-209
streamtube function 11-210
stripscaling function 11-211
sub function 11-212
subsasgn function \(11-214\)
subsref function \(11-215\)
sum function 11-216
SumFractionLength property \(9-8\)
SumMode property 9-8
SumWordLength property 9-9
surf function 11-217
surfc function 11-218
surfl function 11-219
surfnorm function \(11-220\)

\section*{T}
text function 11-221
times function 11-222
toeplitz function 11-223
tostring function 11-224
transpose function \(11-225\)
treeplot function 11-226
tril function 11-227
trimesh function 11-228
triplot function 11-229
trisurf function 11-230
triu function 11-231
two's complement 2-9

\section*{U}
uint16 function \(11-233\)
uint32 function 11-234
uint8 function 11-232
uminus function 11-235
unary conversions 2-22
underflows
logging 5-7
uplus function 11-236
upperbound function 11-237

\section*{v}
vertcat function 11-238
voronoi function 11-239
voronoin function 11-240

\section*{w}
waterfall function 11-241
wordlength function 11-242
WordLength property 9-15
wrapping
fixed-point data types 2-5
writing fixed-point data to workspace 8-2

\section*{X}
xlim function 11-243
\(\mathbf{Y}\)
ylim function 11-244 Z
zlim function 11-245```

